English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2530214      線上人數 : 233
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65401


    題名: Augmentation of Tendon Graft-Bone Tunnel Interface Healing by Use of Bioactive Platelet-Rich Fibrin Scaffolds
    作者: 黃錦前
    Chin-Chean Wong, Yi-Yen Yeh, Tsung-Lin Yang, Yang-Hwei Tsuang, Chih-Hwa Chen
    貢獻者: 醫學系骨科學科
    關鍵詞: Keywords: augmentation;bioactive;bone tunnel;platelet-rich fibrin;tendon graft
    日期: 2020-03
    上傳時間: 2025-04-01 16:56:34 (UTC+8)
    摘要: Abstract
    Background: Platelet-rich fibrin (PRF) is a bioactive biomaterial wherein cytokines are enmeshed within the interconnecting fibrin network. PRF can be fabricated into a patch to augment healing of the interface between a tendon graft and bone tunnel.

    Hypothesis: The bioactivity of a PRF scaffold is preserved after PRF is mechanically compressed into a patch. A bioactive PRF patch could promote the incorporation of a tendon graft within the bone tunnel through the formation of a tendon-bone healing zone composed of both fibrocartilaginous tissue and new bone.

    Study design: Controlled laboratory study.

    Methods: Bioactivity of PRF was evaluated through treatment of rabbit tenocytes with PRF-conditioned medium and cultivation of cells on a PRF patch. Cellular morphologic features, viability, and differentiation were analyzed accordingly. In an animal study, a rabbit tendon-bone healing model was established through use of New Zealand White rabbits. The implanted tendon graft was enveloped circumferentially with a bioactive PRF patch before being pulled through a bone tunnel in the proximal tibia. Micro-computed tomography (micro-CT) imaging and histological and biomechanical analyses of the tendon-bone interface were performed at 12 weeks postoperatively.

    Results: PRF improved the viability of the cultured tenocytes. The effects of PRF on in vitro mineralization of tenocytes were comparable with the effects of standard culture medium. The gene expressions of type I collagen and osteopontin were upregulated upon PRF treatment. For the in vivo study, micro-CT images revealed significant new bone synthesis at the tendon-bone interface in the PRF-enveloped group. The tendon-bone healing zone was characterized by abundant fibrocartilage tissue and new bone formation as demonstrated by histological analysis. Biomechanical testing showed significantly higher ultimate loads in the PRF-enveloped group.

    Conclusion: Bioactive PRF could effectively augment healing of tendon graft to bone by inducing the formation of a transitional tendon-bone healing zone composed of fibrocartilage and bone.

    Clinical relevance: Complete healing of the tendon graft in the bone tunnel is a prerequisite for successful ligament reconstruction, which would allow early and aggressive rehabilitation and rapid return to preinjury activity level. From a translational standpoint, the PRF-augmented healing in this rabbit animal model showed a promising biological approach to enhance tendon graft to bone healing via promotion of the functional anchorage between the 2 different materials.
    關聯: Am J Sports Med. 2020 May; 48(6): 1379-1388
    描述: 【110-1 升等】臺北醫學大學教師升等專門著作
    職別:專任
    送審等級:副教授
    著作送審
    資料類型: article
    顯示於類別:[教師升等送審著作] 110

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋