Taipei Medical University Institutional Repository:Item 987654321/65163
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 45422/58598 (78%)
造访人次 : 2515116      在线人数 : 260
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://libir.tmu.edu.tw/handle/987654321/65163


    Title: Linguistic Pattern-Infused Dual-Channel Bidirectional Long Short-term Memory With Attention for Dengue Case Summary Generation From the Program for Monitoring Emerging Diseases-Mail Database: Algorithm Development Study.
    Authors: 莊定武
    Yung-Chun Chang, Yu-Wen Chiu, Ting-Wu Chuang
    Contributors: 醫學系分子寄生蟲暨熱帶疾病學科
    Keywords: Keywords:ProMED-mail;natural language processing;dengue;dual channel;bidirectional long short-term memory
    Date: 2022-07
    Issue Date: 2025-03-27 10:36:16 (UTC+8)
    Abstract: Abstract
    Background:
    Globalization and environmental changes have intensified the emergence or re-emergence of infectious diseases worldwide, such as outbreaks of dengue fever in Southeast Asia. Collaboration on region-wide infectious disease surveillance systems is therefore critical but difficult to achieve because of the different transparency levels of health information systems in different countries. Although the Program for Monitoring Emerging Diseases (ProMED)–mail is the most comprehensive international expert–curated platform providing rich disease outbreak information on humans, animals, and plants, the unstructured text content of the reports makes analysis for further application difficult.
    Objective:
    To make monitoring the epidemic situation in Southeast Asia more efficient, this study aims to develop an automatic summary of the alert articles from ProMED-mail, a huge textual data source. In this paper, we proposed a text summarization method that uses natural language processing technology to automatically extract important sentences from alert articles in ProMED-mail emails to generate summaries. Using our method, we can quickly capture crucial information to help make important decisions regarding epidemic surveillance.
    Methods:
    Our data, which span a period from 1994 to 2019, come from the ProMED-mail website. We analyzed the collected data to establish a unique Taiwan dengue corpus that was validated with professionals’ annotations to achieve almost perfect agreement (Cohen κ=90%). To generate a ProMED-mail summary, we developed a dual-channel bidirectional long short-term memory with attention mechanism with infused latent syntactic features to identify key sentences from the alerting article.
    Results:
    Our method is superior to many well-known machine learning and neural network approaches in identifying important sentences, achieving a macroaverage F1 score of 93%. Moreover, it can successfully extract the relevant correct information on dengue fever from a ProMED-mail alerting article, which can help researchers or general users to quickly understand the essence of the alerting article at first glance. In addition to verifying the model, we also recruited 3 professional experts and 2 students from related fields to participate in a satisfaction survey on the generated summaries, and the results show that 84% (63/75) of the summaries received high satisfaction ratings.
    Conclusions:
    The proposed approach successfully fuses latent syntactic features into a deep neural network to analyze the syntactic, semantic, and contextual information in the text. It then exploits the derived information to identify crucial sentences in the ProMED-mail alerting article. The experiment results show that the proposed method is not only effective but also outperforms the compared methods. Our approach also demonstrates the potential for case summary generation from ProMED-mail alerting articles. In terms of practical application, when a new alerting article arrives, our method can quickly identify the relevant case information, which is the most critical part, to use as a reference or for further analysis.
    Relation: JMIR Public Health Surveill 2022; Vol 8, No 7; e34583
    Description: 【112-1 升等】臺北醫學大學教師升等專門著作
    職別:專任
    送審等級:教授
    著作送審
    Data Type: article
    Appears in Collections:[教師升等送審著作] 112
    [分子寄生蟲暨熱帶疾病學科] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML0View/Open


    All items in TMUIR are protected by copyright, with all rights reserved.


    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback