English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45279/58455 (77%)
造訪人次 : 2491750      線上人數 : 276
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65136


    題名: A Cross-Validated Feature Selection (CVFS) approach for extracting the most parsimonious feature sets and discovering potential antimicrobial resistance (AMR) biomarkers
    作者: 吳育瑋
    Ming-Ren Yang, Yu-Wei Wu
    貢獻者: 醫學資訊研究所
    日期: 2023
    上傳時間: 2025-03-26 10:38:49 (UTC+8)
    摘要: Understanding genes and their underlying mechanisms is critical in deciphering how antimicrobial-resistant (AMR) bacteria withstand detrimental effects of antibiotic drugs. At the same time the genes related to AMR phenotypes may also serve as biomarkers for predicting whether a microbial strain is resistant to certain antibiotic drugs. We developed a Cross-Validated Feature Selection (CVFS) approach for robustly selecting the most parsimonious gene sets for predicting AMR activities from bacterial pan-genomes. The core idea behind the CVFS approach is interrogating features among non-overlapping sub-parts of the datasets to ensure the representativeness of the features. By randomly splitting the dataset into disjoint sub-parts, conducting feature selection within each sub-part, and intersecting the features shared by all sub-parts, the CVFS approach is able to achieve the goal of extracting the most representative features for yielding satisfactory AMR activity prediction accuracy. By testing this idea on bacterial pan-genome datasets, we showed that this approach was able to extract the most succinct feature sets that predicted AMR activities very well, indicating the potential of these genes as AMR biomarkers. The functional analysis demonstrated that the CVFS approach was able to extract both known AMR genes and novel ones, suggesting the capabilities of the algorithm in selecting relevant features and highlighting the potential of the novel genes in expanding the antimicrobial resistance gene databases.
    關聯: Computational and Structural Biotechnology Journal; 21; 769-779
    描述: 【112-1 升等】臺北醫學大學教師升等專門著作
    職別:專任教師
    送審等級:教授
    著作性質:著作
    資料類型: article
    顯示於類別:[教師升等送審著作] 112
    [醫學科學研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML1檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋