English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2503334      線上人數 : 271
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65018


    題名: 以深度學習自動分類腦實質於放射治療後白化損害的嚴重程度
    Automated Classification of the Severity of Cerebral Leukoencephalopathy after Radiotherapy using Deep Learning
    作者: 簡玉菁
    CHIEN, YU-CHING
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    彭徐鈞
    關鍵詞: 全腦放射治療;腦室周圍白質腦病變;深度學習;轉移性腦瘤;卷積神經網路;白質腦病變
    Whole Brain Radiotherapy;Periventricular Leukoencephalopathy;Deep Learning;Metastatic Brain Tumor;Convolutional Neural Network;Leukoencephalopathy
    日期: 2024-01-10
    上傳時間: 2025-01-06 09:20:00 (UTC+8)
    摘要: 背景動機
    腦室周圍白質腦病變 (Periventricular leukoencephalopathy, PLV) 已經成為當前醫學研究的重要議題,特別是在神經系統疾病的診斷和監測中。對於臺北榮民總醫院癌病中心 (Taipei Veterans General Hospital Cancer Center)所接觸的腦部轉移性腦瘤患者而言,對這些腦部白化區域的詳細和準確分析顯得尤為重要。然而,傳統的影像分析方法可能限於主觀評估,容易產生偏差。這並不能完全滿足臨床上的需求。因此,我們認為使用先進的人工智慧技術,特別是深度學習,可能會為這一領域帶來突破。
    研究目的
    本研究旨在利用 CNN InceptionV3、ResNet101 和 VGG19 深度卷積神經網路模型,對臺北榮民總醫院癌病中心的腦部核磁共振(Magneticresonance imaging ,MRI)影像數據進行分析,進而計算腦部實質白化區域的嚴重程度。通過這種方式,我們希望提供一種更高效、準確的方法,來協助臨床醫師進行疾病評估。
    研究方法
    我們首先收集了臺北榮民總醫院癌病中心患者的腦部核磁共振影像數據。接著,利用深度學習技術,尤其是深度卷積神經網路模型,對這些影像數據進行訓練和優化。我們特別選擇了三個預先訓練的 CNN 模型 InceptionV3、ResNet101 和 VGG19,並使用遷移學習方法進行微調。我們的模型設定將腦部白化程度分為 Grade 0 至3。在模型訓練過程中,我們對不同的參數組合進行了多次嘗試,以確保獲得最佳效果。考慮到模型經訓練後,應用到新數據並作出準確預測能力的重要性,我們採用五折交叉驗證的方法確保結果的穩定性和可靠性。此外,我們也使用了多種效能指標,如kappa 係數、準確率和 F1 score、weighted precision 等,以全面評估模型的
    性能。
    研究結果
    雖然我們的研究已有初步成績,但仍面臨一些挑戰和限制。我們正持續進行模型的優化工作,以期待未來能夠減少對人工標註的依賴。初步通過我們在人工標註輔助下的深度學習模型,我們可以自動且準確地分類腦部實質白化區域的嚴重程度。實驗結果顯示,三種模型均展現高準確性,其中,InceptionV3 模型在訓練過程中達到了100%的準確率,ResNet101 和VGG19模型也展現出高達97.5%和95%的準確性。
    結論
    人工智慧利用深度學習技術在腦室周圍白質腦病變在手工標註分析中展現出了其強大的潛力。我們可以更精確的分析核磁共振或電腦斷層(Computed Tomography ,CT)掃描圖像,以辨識和預測白質腦病的早期發展。我們期望這些新的分析方法能夠在未來臨床實踐中為臨床醫生提供更加精確、客觀和迅速的評估工具,從而改善病人的治療和照護品質。
    Background
    Periventricular leukoencephalopathy (PVL) has emerged as a significant focus of current medical research, particularly in the diagnosis and monitoring of neurological disorders. For patients with brain metastases treated at the Taipei Veterans General Hospital Cancer Center, a detailed and accurate analysis of these periventricular white matter lesions is of paramount importance. However, traditional image analysis methods may be limited by subjective assessments, leading to potential bias and falling short of clinical requirements. Therefore, we believe that the application of advanced artificial intelligence techniques, particularly deep learning, holds the potential for breakthroughs in this field.
    Research purposes
    This study aims to utilize CNN models, specifically InceptionV3, ResNet101, and VGG19 deep convolutional neural networks, to analyze brain MRI data from Taipei Veterans General Hospital Cancer Center and calculate the severity of periventricular leukoencephalopathy. Through this approach, we intend to provide a more efficient and accurate method to assist clinicians in disease assessment.
    Research methods
    We initially collected brain MRI data from patients at the Taipei Veterans General Hospital Cancer Center. Subsequently, using deep learning techniques, especially deep convolutional neural network models, we trained and fine-tuned these image data. We specifically chose three pre-trained CNN models: InceptionV3, ResNet101, and VGG19, and employed transfer learning for fine-tuning. Our model categorizes the severity of white matter lesions into Grade 0 to 3. During model training, we experimented with various parameter configurations to ensure optimal performance. Considering the importance of the model's ability to make accurate predictions on new data after training, we employed five-fold cross-validation to ensure the stability and reliability of the results. Additionally, we used multiple performance metrics, such as kappa coefficient, accuracy, F1 score, weighted precision, etc., to comprehensively evaluate the model's performance.
    Result
    Although our research has yielded preliminary results, we still face certain challenges and limitations. We are actively engaged in ongoing model optimization efforts, with the aim of reducing our reliance on manual annotations in the future. Through our deep learning models assisted by manual annotations, we have achieved the capability to automatically and accurately classify the severity of periventricular leukoencephalopathy in the brain regions. Experimental results have demonstrated high levels of accuracy across all three models. In particular, the InceptionV3 model reached 100% accuracy during the training process, while the ResNet101 and VGG19 models achieved accuracy levels of up to 97.5% and 95%, respectively.
    Conclusion
    Artificial intelligence, utilizing deep learning techniques, has demonstrated its significant potential in the analysis of periventricular leukoencephalopathy through manual annotations. This allows for a more precise analysis of magnetic resonance imaging (MRI) or computed tomography (CT) scan images, aiding in the identification and early prediction of white matter brain diseases. We anticipate that these novel analytical methods will provide clinical practitioners with more accurate, objective, and expeditious assessment tools in future clinical practice, thereby enhancing the quality of patient care and treatment.
    描述: 碩士
    指導教授:彭徐鈞
    口試委員:楊懷哲
    口試委員:康峻宏
    口試委員:彭徐鈞
    附註: 論文公開日期:2024-01-24
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML99檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋