English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2503344      線上人數 : 254
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65015


    題名: 呼氣丙酮濃度變化與睡眠血氧濃度關聯性探討
    Correlation between changes in exhaled acetone concentration and sleep blood oxygen concentration
    作者: 黃耀漢
    Huang, Yao-Han
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    蘇家玉
    關鍵詞: 睡眠血氧濃度;酮體變化;睡前與起床呼氣丙酮濃度變化;機器學習
    sleep blood oxygen concentration;ketone body changes;changes in exhaled acetone concentration before going to bed and starting from normal times;Machine learning
    日期: 2024-05-29
    上傳時間: 2025-01-06 09:19:52 (UTC+8)
    摘要: 背景 : 睡眠障礙涵蓋範圍廣泛,常見包含低氧血症(Hypoxemia)、阻塞性睡眠呼吸中止症(Obstructive Sleep Apnea;OSA)、猝睡症; 睡眠不足等,全球睡眠缺氧患者數量約10億人,佔全球總人口約12.6%,睡眠血氧濃度檢測是評估睡眠呼吸中止症的重要指標,但目前的檢測方法存在痛苦、昂貴、時間與地點受限等問題。
    目的 : 本研究提出利用呼氣丙酮濃度分析替代血液或尿液酮體的檢測,以評估睡眠血氧濃度。呼氣丙酮是酮體的良好預測因子,利用呼氣丙酮濃度分析具有無創、頻繁、低成本等優點。
    方法 : 本研究受試者條件,包含年齡介於20至60歲之間、性別不限、試驗前三個月無住院史,收案時間為期兩週,進而研究呼氣丙酮變化與睡眠血氧濃度關聯性,以驗證呼氣丙酮濃度分析是否可作為睡眠血氧濃度評估的有效工具。
    結果 : 本研究結論為呼氣丙酮變化與睡眠血氧濃度高度關聯性,以本研究數據集進行機器學習建立二分類預測模型,經由五種模型(邏輯斯回歸、K-近鄰、決策樹、隨機森林、極限梯度提升)進行比較,得出隨機森林(Random Forest)模型預測效能最佳,準確率(Accuracy)達0.97±0.00、精確率(Precision)達0.87±0.01、召回率(Recall)達0.94±0.02、特異性(Specificity)達0.97±0.01、F1-Score達0.90±0.00。未來有機會藉由呼氣丙酮濃度分析方式,建立AI預測模型,提供醫療人員快速睡眠血氧濃度評估參考資訊。
    Background: Sleep disorders encompass a wide range of conditions, including hypoxemia, obstructive sleep apnea (OSA), narcolepsy, and sleep deprivation. Globally, approximately 1 billion people suffer from sleep-related hypoxia, accounting for about 12.6% of the world's population. Monitoring blood oxygen saturation during sleep is a crucial indicator for assessing sleep apnea. However, current methods for such monitoring are often painful, expensive, and limited by time and location constraints.
    Objective: This study proposes the use of breath acetone concentration analysis as an alternative to blood or urine ketone body detection for assessing sleep oxygen saturation. Breath acetone is a good predictor of ketone bodies, and its analysis offers non-invasive, frequent, and low-cost advantages.
    Methods: The study's inclusion criteria for participants include individuals aged between 20 and 60, regardless of gender, with no history of hospitalization in the past three months. The recruitment period lasted two weeks. The study investigates the correlation between breath acetone changes and sleep oxygen saturation to verify whether breath acetone concentration analysis can serve as an effective tool for evaluating sleep oxygen levels.
    Results: The study concluded that changes in breath acetone are highly correlated with sleep oxygen saturation. Using the study's dataset, a binary classification prediction model was built and compared across five models (Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, and Extreme Gradient Boosting). The Random Forest model demonstrated the best predictive performance, with an accuracy of 0.97 ± 0.00, precision of 0.87 ± 0.01, recall of 0.94 ± 0.02, specificity of 0.97 ± 0.01, and F1-Score of 0.90 ± 0.00. In the future, breath acetone concentration analysis may establish AI predictive models, providing healthcare professionals with rapid assessment information for sleep oxygen levels.
    描述: 碩士
    指導教授:蘇家玉
    口試委員:劉文德
    口試委員:彭徐鈞
    口試委員:蔡承育
    口試委員:林于翔
    口試委員:蘇家玉
    附註: 論文公開日期:2024-06-21
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML99檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋