Taipei Medical University Institutional Repository:Item 987654321/65014
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 45422/58598 (78%)
造访人次 : 2514182      在线人数 : 182
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65014


    题名: 應用TSTO-HANN-GA框架建立心血管疾病風險之類神經網路精準預測模型
    Utilizing the TSTO-HANN-GA Framework to Develop an Artificial Neural Network Model for the Precise Prediction of Cardiovascular Disease Risk
    作者: 林家銘
    Lin, Chia-Ming
    贡献者: 醫學院人工智慧醫療碩士在職專班
    林于翔
    关键词: 心血管疾病;兩階段田口優化方法;類神經網路;基因演算法;定點醫療診斷
    cardiovascular disease;two-stage Taguchi optimization method;artificial neural network;genetic algorithm;point-of-care testing
    日期: 2024-05-29
    上传时间: 2025-01-06 09:19:50 (UTC+8)
    摘要: 心血管疾病(CVD)風險的早期預測對於預防治療至關重要。因此本研究目的在於使用個人電腦設備去提高預測心血管疾病之準確率,以期達到定點醫療診斷(Point-of-care testing, POCT)之目標。本研究提出了全新的TSTO-HANN-GA架構。此架構可持續不斷地調整類神經網絡(ANN)的超參數,並顯著地提高CVD預測之準確性。TSTO-HANN-GA架構整合了田口方法、類神經網絡與基因演算法(GA),可以更有效地探索超參數空間。相較於傳統的網格搜尋方法,它只需要少於40倍以上的實驗次數。因此,此架構適用於資源有限的環境,例如低功耗設備的環境。該架構成功地找出了ANN模型超參數的最佳設定:4個隱藏層、tanh激活函數、SGD優化器、0.23425849學習率、0.75462782動量率和7個隱藏節點數。此最佳設定在預測心血管疾病上達到了74.25%之平均準確率,此表現也較文獻所提的GA-ANN模型來的好。此一改善結果有望可以在定點醫療診斷(POCT)上進行客制化的心血管疾病預測,也讓每個人具有掌握自己健康的能力,進而對患者的健康產生重大影響。
    Early and accurate prediction of cardiovascular disease risk is crucial for prevention and intervention. This study aims to enhance disease prediction accuracy using personal devices, aligning with point-of-care testing (POCT) objectives. This study introduces TSTO -HANN-GA, a novel framework that continuously refines hyperparameters for an Artificial Neural Network (ANN) model, significantly boosting its accuracy in CVD prediction. TSTO-HANN-GA leverages the Taguchi method, artificial neural network and genetic algorithm (GA) to efficiently explore hyperparameter space. Compared to traditional methods, it requires 40 times fewer experiments, making it suitable for resource-constrained environments, such as those involving low-power devices. The framework successfully identified the optimal configurations for the ANN model's hyperparameters, resulting in a hidden layer of 4, tanh activation function, SGD optimizer, learning rate of 0.23425849, momentum rate of 0.75462782, and 7 hidden nodes. This optimized model achieved an impressive average accuracy of 74.25%, outperforming existing GA-ANN models. This improvement has the potential to significantly impact patient outcomes by enabling personalized CVD prediction at the point of care, empowering individuals to take charge of their heart health.
    描述: 碩士
    指導教授:林于翔
    口試委員:彭徐鈞
    口試委員:蘇家玉
    口試委員:林于翔
    附注: 論文公開日期:2024-07-03
    数据类型: thesis
    显示于类别:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML183检视/开启


    在TMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈