English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2503291      線上人數 : 249
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65013


    題名: 使用深度學習技術自動測量電視螢光吞嚥攝影檢查中與吞嚥障礙相關的重要指標
    Deep Learning Analysis for the Automatic Measurement of Key Dysphagia Events in Videofluoroscopic Swallowing Studies
    作者: 林寧
    LIN, NING
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    黎阮國慶
    關鍵詞: 吞嚥障礙;鋇劑吞嚥攝影檢查;深度學習;醫學影像偵測
    dysphagia;VFSS;deep learning;medical image detection;YOLOV9
    日期: 2024-06-25
    上傳時間: 2025-01-06 09:19:48 (UTC+8)
    摘要: 吞嚥障礙指的是在吞嚥食物過程中遇到的困難。這些困難可能導致嗆咳、吸入性肺炎、脫水和營養不良等風險。早期發現吞嚥障礙並進行及時的吞嚥訓練可以有效幫助患者預防吸入性肺炎及相關併發症。因此,準確及時地診斷患者是否有吞嚥困難至關重要。
    目前,診斷吞嚥困難的黃金標準評估工具是吞嚥攝影檢查(VFSS)。這種評估工具為臨床醫療專業人員提供了客觀且全面的診斷基礎,使其能夠精確觀察吞嚥過程中每個階段的生理結構和功能。然而,臨床專業人員需要投入大量的時間和人力來進行影像分析和報告撰寫。此外,影像分析結果的評分者間信度通常不理想。
    近年來,研究人員開發了多種基於機器學習的VFSS自動分析方法。但較少有研究使用深度學習模型來檢測多個事件,並且沒有研究將模型預測的結果與現有的吞嚥障礙評分量表進行比較。

    因此,我們的研究旨在使用深度學習模型(YOLOv9)來自動檢測多個與吞嚥障礙相關事件,並調查其與既有的吞嚥障礙評分量表(如MBSImp和DIGEST)的相關性或預測能力。結果顯示,我們訓練的YOLOv9模型達到了中等準確度,精度和召回率為70.06%,mAP_0.5為72.00%,顯示出其在臨床應用中的顯著潛力。相關性分析(F統計量=18.167,p值=0.002)表明,我們的模型能夠有效分類喉部食團殘留嚴重程度,且與MBSImp量表一致,這表明其具有增強臨床評估的潛力。我們相信,我們的模型可以幫助臨床醫療專業人員提高效率,並加強評估結果的一致性。此外,它還可以成為未來吞嚥評估工具開發的先驅。
    Swallowing disorders refer to difficulties encountered during the process of swallowing food. These difficulties may lead to risks such as choking, aspiration pneumonia,dehydration, and malnutrition. Early detection of swallowing disorders and timely swallowing training can effectively help patients prevent aspiration, and related complications. Therefore, the accurate and timely diagnosis of whether a patient has swallowing difficulties is crucial.
    Currently, the gold standard assessment tool for diagnosing swallowing difficulties is the Videofluoroscopic Swallow Study (VFSS). This assessment provides clinical healthcare professionals with an objective and comprehensive diagnostic basis, allowing precise observation of the physiological structures and functions at each stage of the swallowing process. However, clinical professionals need to invest a significant amount of time and manpower in image interpretation and report generation. Moreover, inter-rater reliability in the interpretation results is often suboptimal.
    In recent years, researchers have developed several machine-learning based approaches for VFSS automatic analysis. However, few studies use deep learning models to detect multiple events, and no studies compare the models’ performances with existing dysphagia rating scales.
    Therefore, our study aims to use a deep learning model(Yolov9) for automatically detecting multiple events and to investigate its correlation or predictive ability with established swallowing disorder rating scales such as MBSImp and DIGEST. The results show that our YOLOv9 trained model achieved a moderate level of accuracy, with a precision and recall of 70.06% and an mAP_0.5 of 72.00%, showcasing significant potential for clinical applications. The correlation analysis (F-statistic = 18.167, p-value = 0.002) indicates that our model effectively classifies pharyngeal residue severity. It aligns well with the MBSImP scale, suggesting its potential to enhance clinical evaluations. We believe that our model can assist clinical healthcare professionals in improving efficiency and enhancing the consistency of interpretation results. Additionally, it can serve as a pioneering approach for the development of future swallowing assessment tools.
    描述: 碩士
    指導教授:黎阮國慶
    口試委員:羅?君
    口試委員:陳弘洲
    口試委員:黎阮國慶
    附註: 論文公開日期:2026-06-30
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML0檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋