English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2503344      線上人數 : 255
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65012


    題名: 慢波睡眠與心率變異性的AI模型之可行性研究
    Feasibility Study of AI Models for Slow-Wave Sleep and Heart Rate Variability
    作者: 陳家祺
    Chen, Chia-Chi
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    蘇家玉
    劉文德
    關鍵詞: 慢波睡眠;慢波;睡眠多項生理檢查;心率變異性;深度學習的時間序列模型;田口方法
    Slow Wave Sleep;slow waves;polysomnography;heart rate variability;deep learning time series models;Taguchi methods
    日期: 2024-05-29
    上傳時間: 2025-01-06 09:19:45 (UTC+8)
    摘要: 中文摘要
    論文名稱:慢波睡眠與心率變異性的AI模型之可行性研究
    臺北醫學大學醫學院人工智慧醫療碩士在職專班
    研究生姓名: 陳家祺
    指導教授:蘇家玉 臺北醫學大學 教授

    研究背景:傳統上評估慢波睡眠的情形需依賴睡眠多項生理檢查,這種檢查過程繁瑣對患者而言,頗為不便,這限制了一些患者接受睡眠檢查的意願。為解決此一問題,本研究目的在探討一種基於心率變異性的人工智慧模型,用以預測慢波睡眠。透過應用機器學習方法或深度學習技術,提供一種更為簡便且可靠的方法,來獲取和預測睡眠週期中慢波睡眠的實際分佈。

    研究方法:本研究?回溯性研究。資料來源為衛生福利部的雙和醫院
    睡眠中心,505位受試者的睡眠多項生理檢查記錄,以睡眠多項生理檢查記錄進行了連續的心率變異性、血氧飽和度和電腦自動偵測慢波,頻率為0.4Hz ~ 4Hz。然後根據睡眠技師判定的睡眠分期記錄,以是否出現慢波數據進行標記。模型的特徵包括平均心率、九個心率變異性指標、和二個血氧飽和度指標;然後將數據集分為80%的訓練集和20%的測試集,使用四種機器學習方法與三種基於深度學習的時間序列模型進行模型訓練。在模型評估過程中,採用5折交叉驗證來計算模型的平均準確率(Accuracy)、接收者操作特徵曲?下面積(AUROC)和精確率-召回率曲?下面積(AUPRC),用以評估在這三個指標上,表現最佳的模型。另外,通過田口方法有效地優化多組合模型的最佳超參數組合。

    研究結果:第三組實驗為最佳。數據集共有271,125筆,包含非慢波睡
    眠事件共計188,931筆及慢波睡眠事件共計82,194筆。經由5折交叉驗證後,取模型評估指標Accuracy,AUROC及 AUPRC分別計算平均值,共有8個組合模型達到預期目標。機器學習方法以隨機森林(Random Forest)模型,應用隨機過採樣(Random Oversampling)效果最佳,達到的評估指標,Accuracy = 86.78%、AUROC = 0.934、AUPRC = 0.953。深度學習方法以長短期記憶(LSTM)模型,應用SMOTE Oversampling為最佳,Accuracy = 84.07%、AUROC = 0.915、AUPRC = 0.933。

    研究數據顯示,以心率變異性作為人工智慧模型的特徵,適合用於預測慢波睡眠。這不僅提升了居家檢查的可行性和患者的接受度,還增?了醫生進行長期監測的能力。
    ABSTRACT
    Title of Thesis:Feasibility Study of an AI Model for Slow-Wave
    Sleep and Heart Rate Variability
    Author:Chia-Chi Chen
    Thesis advised by:Emily Chia-Yu Su
    Taipei Medical University,
    Professional Master Program in Artificial Intelligence in Medicine

    Traditionally, assessing Slow-Wave Sleep relies on Polysomnography, a cumbersome and inconvenient procedure for patients, limiting some patients' willingness to undergo sleep studies. To address this issue, this research aims to explore an Artificial Intelligence model based on Heart Rate Variability indicators to predict Slow-Wave Sleep. By applying Machine Learning and Deep Learning techniques, a more convenient and reliable method is provided to obtain and predict the actual distribution of Slow-Wave Sleep during sleep cycles.

    This retrospective study sourced data from the Sleep Center at Shuang Ho Hospital, Ministry of Health and Welfare, involving 505 participants with Polysomnography records. Continuous Heart Rate Variability, Oxygen Saturation , and automatic detection of Slow Waves, specifically Slow Waves (0.4Hz - 4Hz), were recorded. Sleep stages were marked based on whether Slow Waves data appeared, as determined by sleep technicians. The model's features included mean Heart Rate , nine Heart Rate Variability indicators, and two Oxygen Saturation indicators. The dataset was divided into an 80% training set and a 20% testing set, using four machine learning methods and three deep learning-based time series models for training. Model evaluation involved 5-fold cross-validation to calculate average Accuracy, Area Under the Receiver Operating Characteristic Curve (AUROC), and Area Under the Precision-Recall Curve (AUPRC), identifying the best-performing models. Furthermore, the Taguchi method was employed to optimize the best hyperparameter combination for multi-model ensembles.

    Research Results: The third experiment was the best overall. The dataset comprises a total of 271,125 records, including 188,931 records of non-slow-wave sleep events and 82,194 records of slow-wave sleep events. Using 5-fold cross-validation, the average values of the model evaluation metrics Accuracy, AUROC, and AUPRC were calculated. There are eight ensemble models that have achieved the expected goal. Among machine learning methods, the Random Forest model with Random Oversampling performed the best, achieving the following evaluation metrics: Accuracy:86.78%, AUROC:0.934, and AUPRC:0.953. For deep learning methods, the LSTM model with SMOTE Oversampling was the best performer, achieving the following evaluation metrics: Accuracy:84.07%, AUROC:0.915, and AUPRC:0.933.

    The research data indicates that using heart rate variability as a feature for artificial intelligence models is suitable for predicting slow-wave sleep. This not only enhances the feasibility of home examinations and patient acceptance but also improves the ability of doctors to conduct long-term monitoring.
    描述: 碩士
    指導教授:蘇家玉
    共同指導教授:劉文德
    口試委員:蘇家玉
    口試委員:劉文德
    口試委員:彭徐鈞
    口試委員:蔡承育
    口試委員:林于翔
    附註: 論文公開日期:2024-07-12
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML151檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋