English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2503343      線上人數 : 254
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65011


    題名: 卷積神經網絡輔助診斷常規胸腔X光影像無症狀冠狀動脈疾病
    Convolutional Neural Network Aided Diagnosis of Asymptomatic Coronary Artery Disease from Routine Chest Radiographs
    作者: 楊必立
    YANG, PEI-LI
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    彭徐鈞
    關鍵詞: 人工智慧;卷積神經網絡;胸腔X光;冠狀動脈疾病
    Artificial Intelligence;Convolutional Neural Network;Chest Radiographs;Coronary Artery Disease
    日期: 2024-07-03
    上傳時間: 2025-01-06 09:19:43 (UTC+8)
    摘要: 緒論
    冠狀動脈疾病(coronary artery disease, CAD)是全球主要的死亡原因之一。本研究旨在研究無症狀健康篩檢個案,比較六種類胸腔X光影像,透過卷積神經網絡(convolutional neural network, CNN)二分類預測有無冠狀動脈鈣化。
    材料與方法
    本研究通過新光財團法人新光吳火獅紀念醫院人體試驗委員會審查,回溯性蒐集2017年11月1日至2022年12月31日期間接受健檢的無症狀成人個案。收集其胸腔X光正面照、胸腔X光側面照和電腦斷層冠狀動脈鈣化檢查影像。經影像前處理和資料增強後,分別以六種類影像透過預訓練VGG19、ResNet101和InceptionV3模型,進行訓練和5折交叉驗證,以最佳模型進行外部測試。以Grad-CAM(gradient-weighted class activation mapping)視覺化方式分析熱圖。比較人工智慧與專科醫師預測的結果。
    結果
    六種類影像輸入類型,均有分類預測有無冠狀動脈鈣化之能力,但未達顯著統計差異。其中,胸腔X光正面照經由VGG19網絡預測,在外部測試集,操作者特徵曲線下面積達0.858,正確率達0.786,且特異性達0.903。
    結論
    在亞裔無症狀健康篩檢族群,通過卷積神經網絡,常規胸腔X光影像,通過卷積神經網絡,具有預測個案冠狀動脈鈣化之能力。影像本身或可做為預測因子之一,且由於高特異性,現階段該模型可能做為初步篩檢,避免非必要電腦斷層冠狀動脈鈣化檢查以減少輻射劑量暴露。
    Introduction
    Coronary artery disease (CAD) is one of the leading causes of death worldwide. This study aims to examine asymptomatic individuals undergoing health screenings and compare six types of chest X-ray images to predict the presence of coronary artery calcification (CAC) using convolutional neural networks (CNNs).
    Materials and Methods
    This study was approved by the Institutional Review Board of Shin Kong Wu Ho-Su Memorial Hospital. Asymptomatic adults who underwent health screenings from Nov. 1, 2017, to Dec. 31, 2022, were retrospectively collected. Chest X-ray poster-anterior (PA) and lateral views and computed tomography (CT) images for CAC assessment were collected. After image preprocessing and data augmentation, the six types of images were used to train and validate the models using pre-trained VGG19, ResNet101, and InceptionV3 networks with 5-fold cross-validation. The best-performing model was tested on external dataset. Grad-CAM (gradient-weighted class activation mapping) was used to visualize the heatmaps. Comparison of results between artificial intelligence and radiologist.
    Results
    All six types of image inputs have the ability to classify and predict the presence of coronary artery calcification, but none reached statistical significance. Among them, the chest X-ray PA view, predicted by the VGG19 network, achieved an area under the receiver operating characteristic curve (AUC) of 0.858, an accuracy of 0.786, and a specificity of 0.903 in the external test set.
    Conclusion
    In asymptomatic Asian health screening populations, routine chest X-ray images, analyzed through CNN, have the ability to predict coronary artery calcification. The images themselves could serve as one of the predictive factors. Due to the high specificity, this model could currently be used for initial screening to avoid unnecessary CT coronary artery calcification scans, thereby reducing radiation exposure.
    描述: 碩士
    指導教授:彭徐鈞
    口試委員:彭徐鈞
    口試委員:康峻宏
    口試委員:邱泓文
    附註: 論文公開日期:2024-07-15
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML160檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋