English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2522677      線上人數 : 179
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65009


    題名: 運用機器學習方法於東亞人種之第一孕期唐氏症風險預測
    Machine Learning-Based Prediction of First Trimester Down Syndrome Risk in East Asian Populations
    作者: 陳彥廷
    CHEN, YEN-TIN
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    林于翔
    關鍵詞: 機器學習;深度學習;第一孕期唐氏症篩檢;特徵選取
    Machine learning;First trimester Down syndrome screening;Deep learning;Feature selection
    日期: 2024-07-16
    上傳時間: 2025-01-06 09:19:37 (UTC+8)
    摘要: 背景:
    唐氏症為最常見的新生兒染色體異常,唐氏症患者常會有發展遲緩及先天性構造異常。第一孕期唐氏症篩檢使用生母體徵、胎兒超音波、生母血清指標等特徵,可測出胎兒唐氏症風險值。目前較少有相關文獻,探討使用不同之機器學習模型,去和第一孕期唐氏症篩檢原始預測模型比較,因此若是可以透過訓練機器學習模型,達到和原始預測模型類似的效果,將可優化整體篩檢流程。
    方法:
    使用台北長庚醫院之第一孕期唐氏症篩檢的資料,除原始資料集外,使用不同資料平衡演算法來進行組別不平衡之處理,再以五折驗證法,訓練機器學習模型,以原始第一孕期唐氏症預測模型之風險值為真實值,來評估機器學習成效。為增加機器學習模型之效率,對原有資料集進行特徵選取,選出五項重要特徵,即生母年紀、年紀對應之唐氏症背景值、頸部透明帶厚度、PAPP-A 和 Free beta HCG濃度,來和使用全部特徵之機器學習模型比較,並比較和原始第一孕期唐氏症預測模型之速度差異。最後,評估機器學習運行之邏輯性,使用機器自選特徵語法,讓機器學習模型選出最重要之五項特徵。
    結果:
    共有4061個案,在前處理後,有3812個案可供研究,其中高風險個案165位,低風險個案3647位。使用五折驗證之機器學習模型,在高風險個案中,最佳Recall為0.84,由Light GBM在random under sampling資料集中達成,而最佳之F1 Score為0.6,由LSTM在SVM-SMOTE資料集中達成,最佳之AUC為0.939,則由ANN及LSTM在random over sampling資料集中達成。使用特徵選取五項最重要特徵之模型,在高風險個案中最佳Recall為0.84,由SVM在random under sampling資料集中達成,而最佳之F1 Score為0.60,由ANN在SVM-SMOTE資料集中達成,最佳之AUC為0.929,則由ANN 在random over sampling資料集中達成。機器自選最重要之五項特徵,大部份機器學習模型(92.5%)都找出相同之五項特徵,即生母年齡、生母年齡對應之唐氏症背景值、胎兒頸部透明帶厚度、PAPP-A濃度,和free beta HCG濃度。使用特徵選取五項特徵之機器學習模型,輸入單一個案平均為10.4秒,而使用原始第一孕期唐氏症預測模型,輸入單一個案平均為109.1秒。
    結論:
    本研究證實,使用機器學習模型來預測唐氏症風險,可以達成和原始第一孕期唐氏症預測模型相似之成效,且可提昇運算速度約十倍,對於臨床工作之優化將有很大的幫助。

    關鍵字: 機器學習、第一孕期唐氏症篩檢、深度學習、特徵選取
    Background:
    Down syndrome is the most common chromosomal abnormality in newborns, often resulting in developmental delays and congenital structural anomalies. First-trimester Down syndrome screening utilizes maternal characteristics, fetal ultrasound, and maternal serum markers to predict the Down syndrome risk of the fetus. Currently, there is limited literature comparing the performance of different machine learning models to the original first-trimester Down syndrome screening models. Therefore, if machine learning models can be trained to achieve similar effectiveness to the original models, it could optimize the overall screening process.
    Methods:
    Using the first-trimester Down syndrome screening data from Taipei Chang Gung Memorial Hospital, various data balancing algorithms were applied to handle data imbalances, in addition to the original dataset. Machine learning models were then trained using five-fold cross-validation, with the risk values from the original first-trimester Down syndrome prediction model serving as the ground truth. To enhance the efficiency of the machine learning models, feature selection was performed on the original dataset, identifying five key features: maternal age, maternal age-related background risk for Down syndrome, fetal nuchal translucency thickness, serum PAPP-A, and free beta HCG levels. These selected five-feature models were compared with those machine learning models using all 17 features, and the speed differences were also compared with the original first-trimester Down syndrome prediction model. Finally, the logical consistency of the machine learning models was evaluated by allowing them to identify the most important five features using an automated feature selection algorithm.
    Results:
    Out of 4061 cases, 3812 cases were available for analysis after preprocessing, including 165 high-risk and 3647 low-risk cases. Among the machine learning models using five-fold cross-validation, the best recall of 0.84 in high-risk cases was achieved by LightGBM on the random under sampling dataset. The best F1 score of 0.6 was achieved by LSTM on the SVM-SMOTE dataset, and the highest AUC of 0.939 was achieved by both ANN and LSTM on the random over sampling dataset. Using the model with the five selected features, the best recall of 0.84 in high-risk cases was achieved by SVM on the random under sampling dataset, the best F1 score of 0.60 was achieved by ANN on the SVM-SMOTE dataset, and the highest AUC of 0.929 was achieved by ANN on the random over sampling dataset. The machine-selected five most important features were identified as the same five features by 92.5% of the machine learning models: maternal age, maternal age-related Down syndrome background risk, fetal nuchal translucency thickness, serum PAPP-A and free beta HCG levels. The average time to input a single case using the feature-selected machine learning model was 10.4 seconds, compared to 109.1 seconds using the original first-trimester Down syndrome prediction model.
    Conclusion:
    This study confirms that using machine learning models to predict the risk of Down syndrome can achieve similar effectiveness to the original first-trimester Down syndrome prediction model while increasing computational speed by approximately ten times, significantly benefiting the optimization of clinical workflows

    Key words: machine learning, First trimester Down syndrome screening, deep learning, feature selection
    描述: 碩士
    指導教授:林于翔
    口試委員:林于翔
    口試委員:蘇家玉
    口試委員:彭徐鈞
    附註: 論文公開日期:2024-12-31
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML179檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋