English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2522677      線上人數 : 179
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/65003


    題名: 使用機器學習輔助選擇抗生素處方治療軟組織感染
    Machine learning to assist in selecting antibiotic prescriptions to treat soft tissue infections
    作者: 田昇達
    TIEN, Sheng-TA
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    林明錦
    關鍵詞: 軟組織感染;抗生素;機器學習;決策支持系統;臨床預測
    soft tissue infections;antibiotics;machine learning;decision support system;clinical prediction
    日期: 2024-06-12
    上傳時間: 2025-01-06 09:19:20 (UTC+8)
    摘要: 本研究探討了機器學習模型在輔助選擇抗生素處方以治療軟組織感染中的應用。通過分析大量臨床數據,構建了多個機器學習模型,包括SVM、Random Forest、Decision Tree和XGBoost。研究結果顯示,所有模型的交叉驗證平均值均達到0.9以上,其中XGBoost模型表現最佳,交叉驗證平均值達到0.996,並且在預測精度和穩定性方面也表現優異。

    進一步的分析顯示,XGBoost模型在多分類問題上的精確率、召回率和F1分數也優於其他模型。在具體錯誤分類上,XGBoost模型的預測錯誤量最少,不合理的預測錯誤比例也最低。通過專家意見分析,發現錯誤預測主要集中在某些抗生素組合的分類上,這可能與臨床上同時使用這些藥品的開立頻率有關。另一類錯誤是申請單上多項適應症同時登載,所導致的研究偏差,反映了機器在處理複雜組合藥品時的挑戰。此外,本研究還進行了文獻比較,驗證了模型在不同文獻中的應用效果,並分析了模型的優勢與挑戰,以及在實際應用中的考量。

    綜上所述,本研究顯示,機器學習模型,特別是XGBoost,在抗生素處方的準確性和有效性方面具有顯著優勢。這些結果為未來在臨床上應用機器學習輔助抗生素選擇提供了重要的參考依據,並期望能進一步提高臨床治療的精準度和有效性。
    This study explores the application of machine learning models in assisting the selection of antibiotic prescriptions for treating soft tissue infections. By analyzing a large amount of clinical data, several machine learning models were constructed, including SVM, Random Forest, Decision Tree, and XGBoost. The study results show that all models achieved a cross-validation average of over 0.9, with the XGBoost model performing the best, reaching a cross-validation average of 0.996, and demonstrating excellent performance in prediction accuracy and stability.

    Further analysis indicates that the XGBoost model also outperformed other models in terms of precision, recall, and F1 score for multi-class problems. Regarding specific misclassifications, the XGBoost model had the fewest prediction errors and the lowest proportion of unreasonable prediction errors.Through expert opinion analysis, it was found that mispredictions mainly concentrated on certain combinations of antibiotics, which might be related to the frequency of concurrent use of these drugs in clinical practice. Another type of error was due to multiple indications listed simultaneously on the application form, leading to research bias, reflecting the challenges faced by the machine in handling complex drug combinations. Additionally, this study conducted a literature comparison, verifying the model's application effects in different literature, and analyzed the model's advantages and challenges, as well as considerations in practical applications.

    In summary, this study demonstrates that machine learning models, particularly XGBoost, have significant advantages in the accuracy and effectiveness of antibiotic prescription selection. These results provide important references for the future application of machine learning in assisting antibiotic selection in clinical practice, with the hope of further improving the precision and effectiveness of clinical treatments.
    描述: 碩士
    指導教授:林明錦
    口試委員:林明錦
    口試委員:彭徐鈞
    口試委員:蘇家玉
    附註: 論文公開日期:2024-07-23
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML93檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋