English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2531269      線上人數 : 219
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/64981


    題名: 在模擬隔離病房中應用深度機器學習方法做跌倒辨識
    Falling posture recognition using deep machine learning in simulated isolation wards
    作者: 劉湘華
    LIU, HSIANG-HUA
    貢獻者: 醫學資訊研究所碩士在職專班
    林明錦
    關鍵詞: 跌倒;InceptionV3;隔離病房;照護者不足;Grad-CAM
    Falling;InceptionV3;Isolation ward;Lack of caregiver;Grad-CAM
    日期: 2024-06-20
    上傳時間: 2025-01-06 09:13:00 (UTC+8)
    摘要: 病患在住院期間內發生跌倒可能會顯著影響治療策略、增加醫療量能、延長住院天數,並加重醫療人員的負擔。根據台灣病人安全資訊網(TPR)的統計資料顯示,醫療環境中的跌倒可能造成嚴重傷害,並對病患的安全與健康福祉產生重大影響。為了提升隔離病房的照護,我們的研究著重於跌倒影像識別。目的是確保長時間獨自留在隔離病房的病人安全,並預防潛在的傷害。我們利用InceptionV3搭配2D-CNN及5fold交叉驗證架構,在模擬隔離病房環境中進行跌倒姿態的識別。透過應用深度機器學習的方法,我們提出了一個能夠迅速分類跌倒的解決方案,使得在關鍵的「黃金救援時段」內能夠及時介入,提升病人安全。在我們的研究中,我們旨在利用從影像中提取特徵來構建一個預測模型,並用於模擬隔離病房中分類跌倒與非跌倒的情況。本研究共有12名受試者,我們在醫院內選擇了10個模擬隔離病房,代表多種環境。這些受試者們分別會在不同環境中錄製影片,以完成本實驗影像採集的部分。我們的數據庫包含10組樣本作為訓練集,2組樣本作為測試集,共計849張影像。通過設置自定義層的InceptionV3與2D-CNN的預測模型,我們的最佳模型能有效識別模擬隔離病房中的跌倒和非跌倒姿態,AUROC可達到0.89,此方法別具潛力提升病人安全,尤其是在缺乏照護者的醫療保健機構中。
    Falling incident in patient during hospitalization can significantly impact therapeutic strategies, increase costs, extend hospital stays, and burden healthcare staff. According to statistics from the Taiwan Patient Safety Reporting System (TPR) records, falls in healthcare settings can result in serious injuries and have a substantial impact on patient safety and well-being. To enhance isolation ward care, our research focuses on fall recognition. The aim of our study is to ensure the safety of patients who stay alone for prolonged periods and prevent potential injuries.
    Utilizing InceptionV3 with 2D-CNN and 5-fold cross-validation architectures enables precise fall posture recognition in a simulated isolation ward environment. By leveraging deep machine learning technology, we propose a solution that can promptly classify falls, enabling timely intervention during the critical "golden hour" and reducing the risk of further complications. In our study, we aimed to utilize features derived from images to construct a predictive model for classifying falling and non-falling in simulated isolation wards.
    A total of 12 participants were involved. We selected 10 simulated isolation wards within the hospital to represent a variety of environments. Each of the 12 participants recorded videos in these diverse settings to gather image data. Our database includes 10 samples as the training set and 2 samples as the testing set, comprising a total of 849 images. Utilizing InceptionV3 with 2D-CNN by setting a custom layer, our best model effectively recognizes falling and non-falling postures within a simulated isolation ward, achieving an AUROC of 0.89. This approach has the potential to improve patient safety, especially in medical care institutions where there is a lack of caregivers.
    描述: 碩士
    指導教授:林明錦
    口試委員:林明錦
    口試委員:楊軒佳
    口試委員:邱泓文
    附註: 論文公開日期:2024-07-25
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML70檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋