English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45253/58429 (77%)
造訪人次 : 2487338      線上人數 : 250
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/64319


    題名: 利用機器學習預測老年人髖骨骨折術後一年內存活狀態
    Using machine learning to predict the one-year survival status of elderly patients after hip fracture surgery
    作者: 馮上平
    貢獻者: 大數據科技及管理研究所碩士班
    許明暉
    關鍵詞: 機器學習;髖關節骨折;死亡預測模型
    Machine learning;Hip fracture;Survival Rate Prediction Model
    日期: 2024-01-10
    上傳時間: 2024-09-30 14:21:15 (UTC+8)
    摘要: 髖關節骨折好發於老年人身上,常見治療方式為手術治療,大多分為兩種,開放性復位和內固定與人工關節成形術(包括全關節成形術和半關節成形術),發生後12個月內的累計死亡率在20 %至40 %之間。透過收集大量臨床數據,我們的研究旨在利用年齡、性別、骨折型態、手術方式、術前抽血驗驗、其他内科病症等變數套用在機器學習上建立預測模型,藉以預測髖關節骨折手術後一年存活率,以更精確地評估老年病人在手術後的生存風險。這不僅有助於提前識別高風險病人,還可以為臨床醫生提供個別化的預防和治療建議。
    我們使用了來自臺北醫學大學臨床研究資料庫(Taipei Medical University Clinical Research Database, TMUCRD)的資料,該資料包含臺灣北部地區三家醫院的病人資訊。研究中採用了隨機森林(Random Forest, RF)、支持向量機(Support Vector Machine, SVM)、邏輯斯回歸(Logistic Regression, LOG)、極端梯度提升(eXtreme Gradient Boosting, XGB)以及輕量梯度提升機(Light Gradient Boosting Machine, LGB)五種機器學習模型進行分析。
    在顯著相關變項(來自於單便項羅吉斯回歸顯著因子)、中位數補值和LGB模型組合並且使用SMOTENC(Synthetic Minority Over-sampling Technique for Nominal and Continuous features)進行資料增量達到效能最佳,AUC達0.723。而SVM模型在任何情況下有較高的敏感度。
    研究變項方面,我們採用了人口學和共病項目,與相關文獻一致。抽血檢驗資料的遺失值成為研究的挑戰之一,未來的研究可進一步探索更合適的處理方法。建議未來研究者在資料庫使用上進行更深入的培訓,考慮納入手術中的各項數值等因素,以提高模型的預測能力。
    最後總結,雖然我們在資料庫使用上遇到一些困難,但本研究的結果有望為臨床實踐提供實用的參考,改善老年病人在髖關節置換手術後的生存率。同時,透過深入探討老年病人的手術後風險,我們可以更好地理解這一人群在醫學上的需求,為未來的醫療服務和政策制定提供有價值的參考。
    Hip fractures are prevalent among the elderly and are commonly treated with surgical interventions, including open reduction and internal fixation or joint replacement surgeries. The cumulative mortality rate within 12 months post-surgery ranges from 20% to 40%. In this study, we aimed to utilize machine learning techniques on a large clinical dataset, including variables such as age, gender, fracture type, surgical approach, preoperative blood tests, and other comorbidities, to establish a predictive model for one-year survival after hip fracture surgery. This model aims to accurately assess the postoperative survival risk for elderly patients, facilitating early identification of high-risk individuals and providing personalized prevention and treatment recommendations for clinicians.
    We utilized data from the Taipei Medical University Clinical Research Database (TMUCRD), which encompasses patient information from three hospitals in the northern region of Taiwan. Five machine learning models, namely Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LOG), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LGB), were employed for analysis.
    In our study, the optimal performance was achieved by combining significant variables identified through single-variable logistic regression, median imputation, and the (LGB) model. We utilized the Synthetic Minority Over-sampling Technique for Nominal and Continuous features (SMOTENC) to augment the data, resulting in an improved area under the curve (AUC) of 0.723. Notably, the Support Vector Machine (SVM) model exhibited consistently higher sensitivity in all scenarios.
    Regarding study variables, demographic and comorbidity factors were employed, aligning with relevant literature. The challenge of handling missing values in blood test data was acknowledged, and future research could explore more suitable approaches for addressing this issue. It is recommended that future researchers undergo deeper training in database utilization, considering factors such as intraoperative metrics, to enhance the predictive capabilities of the model.
    In conclusion, despite encountering challenges in database usage, the results of this study hold promise in providing practical insights for clinical practice, improving postoperative survival rates for elderly patients undergoing hip fracture surgery. Furthermore, by delving into the postoperative risks of elderly patients, we can better understand the medical needs of this population, offering valuable references for future healthcare services and policy formulation.
    描述: 碩士
    指導教授:許明暉
    口試委員:張詠淳
    口試委員:陳可欣
    口試委員:許明暉
    附註: 論文公開日期:2024-01-24
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML62檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋