English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45253/58429 (77%)
造訪人次 : 2487363      線上人數 : 259
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/64312


    題名: 使用人工智慧深度學習分析黃斑部皺褶病人進行玻璃體切除手術的臨床預後
    Prediction of postoperative visual outcome after idiopathic epiretinal membrane surgery using a deep learning model
    作者: 林欣樂
    LIN, HSIN-LE
    貢獻者: 大數據科技及管理研究所碩士班
    許明暉
    彭徐鈞
    關鍵詞: 人工智慧、深度學習、卷積神經網絡、黃斑部皺褶、眼部共軛斷層掃描儀
    Artificial intelligence、Deep learning、Convolutional neural network、Epiretinal membrane、Optical coherence tomography
    日期: 2024-06-13
    上傳時間: 2024-09-30 14:20:58 (UTC+8)
    摘要: 研究目的
    本研究旨在利用人工智慧深度學習技術,從術前眼部共軛斷層掃描儀(optical coherence tomography, OCT)影像中建構一個模型,預測黃斑部皺褶(epiretinal membrane, ERM)手術的術後結果。

    材料與方法
    本研究收錄了來自607位病患、644隻眼睛的644張術前OCT影像進行內部訓練和驗證,以及使用來自46位病患、52隻眼睛的52張術前OCT影像進行外部測試。術後一年,若snellen視力表上的視力提高了?2行,則分類為“顯著視力改善組”,若術後一年後snellen視力表的視力提高了<2行,則分類為“有限視力改善組”。我們將數據切割為80%用於訓練和20%用於驗證。使用了三個遷移式學習模型Inception-v3、ResNet-101和VGG-19進行了訓練,並使用Grad-CAM進行了熱點分析。最後,邀請了六名眼科醫生評估外部測試數據集,並將其判斷與我們的模型進行比較。

    結果
    在三個預訓練模型中,ResNet-101表現最佳,其Grad-CAM熱圖分析與臨床醫生的邏輯非常相似。其性能指標為召回率0.90,特異性0.90,精確度0.91,F1 分數0.90,準確度0.90 和曲線下面積(AUC) 0.97。與眼科醫師相比,這個深度學習模型的性能顯著優於一般眼科醫師及視網膜專科以外之次專科眼科醫師,略優於資淺之視網膜專科醫師。

    結論
    利用深度學習模型分析術前OCT 影像在預測黃斑部皺褶手術預後方面具有良好成效,這不僅有助於臨床眼科醫師更好地理解手術預後,還能協助臨床研究OCT 影像中所觀察到的顯微結構特徵。這些資訊可為臨床醫生提供更全面的患者資料,從而做出更佳的臨床決策,並更有效地制定黃斑部皺褶患者的手術計劃。
    Purpose
    The purpose of this study is to utilize artificial intelligence deep learning techniques to construct a model predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery from preoperative optical coherence tomography (OCT) images.

    Materials and methods
    A total of 644 OCT images from 644 eyes of 607 subjects were utilized for internal training and validation, and 52 OCT images from 52 eyes of 46 subjects were utilized for external testing. Those with an increase of ?2 lines on the Snellen chart one year after surgery were classified as “Pronounced visual improvement group ”, while those with an increase of <2 lines on the Snellen chart one year after surgery were classified as “ Limited visual improvement group.” Data was split into 80% for training and 20% for validation. Three transfer learning models, Inception-v3, ResNet-101, and VGG-19 were trained using this data, and Grad-CAM was employed for hotspot analysis. Finally, six ophthalmologists were invited to assess the external testing dataset and compare their judgments with our model.

    Results
    Among the three pre-trained models, ResNet-101 performed the best, and its Grad-CAM heatmap analysis closely resembled the logic of clinical physicians. Its performance metrics were recall 0.90, specificity 0.90, precision 0.91, F1-score 0.90, accuracy 0.90, and AUROC 0.97. Compared to human classification, the performance of this deep learning model was significantly superior to general ophthalmologists and slightly better than young retina specialists.

    Conclusion
    Preoperative OCT image analysis using deep learning shows promise in predicting ERM surgery prognosis, aiding ophthalmologists in understanding outcomes and structural mechanisms observed in OCT images.
    描述: 碩士
    指導教授:許明暉
    共同指導教授:彭徐鈞
    口試委員:許明暉
    口試委員:彭徐鈞
    口試委員:張資昊
    口試委員:張詠淳
    口試委員:顏如娟
    附註: 論文公開日期:2029-07-11
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML0檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋