English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 44607/57715 (77%)
造訪人次 : 1621477      線上人數 : 94
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/64283


    題名: 人工智慧模型在偵測牙科植體及骨喪失的有效性評估
    Assessing the effectiveness of artificial intelligence models for detecting dental implant and bone loss
    作者: 李薇芳
    LEE, WEI-FANG
    貢獻者: 牙醫學系博士班
    鄧乃嘉
    張維仁
    關鍵詞: 植體;邊緣骨喪失;深度學習;卷積神經網路;YOLO
    implant;marginal bone loss;deep learning;convolutional neural networks (CNN);YOLO
    日期: 2024-06-24
    上傳時間: 2024-09-12 11:48:58 (UTC+8)
    摘要: 背景與目的:在牙科診斷中,使用根尖X光影像來評估植體系統及其邊緣骨組織的喪失情況極為關鍵。隨著人工智慧技術在放射影像分析領域展現出越來越多的應用價值,本研究旨在開發一種深度學習模型,使用根尖X光影像來辨識和分類牙植體系統,並測量植體周圍邊緣骨骼流失的程度。
    材料與方法:本研究使用了800張根尖X光影像組成的數據集,將其分為訓練、驗證和測試集,並應用了最新的物件偵測深度學習演算法(YOLO v7)進行植體系統及其邊緣骨喪失程度的辨識。模型的性能通過平均精確度 (mAP50; Mean Average Precision)、精確度、召回度和F1分數等關鍵指標進行評估。
    結果與討論:研究結果顯示,該模型在整體性能評估中精確度為0.94、召回率為0.92、F1分數為0.93和mAP為0.94。在植體邊緣骨喪失程度的辨識方面,精確度為0.90、召回率為0.84、F1分數為0.87、mAP為0.86;在非植體邊緣骨喪失程度的辨識方面,精確度為0.97、召回率為0.95、F1分數為0.96、mAP為0.97;而在植體系統辨識方面,精確度在0.90~0.99之間、召回率在0.86~0.98之間、F1分數在0.92~0.96之間以及mAP在0.95~0.98之間。本研究結果證明,YOLO v7模型能夠準確地從根尖X光影像中辨識植體及其邊緣骨組織的喪失,早期預測植體周圍骨質流失可以幫助牙醫及早辨識和治療植體周圍炎,此技術為牙科專業人士及及面臨植體問題的患者提供了有力的支持和應用。
    Background and Purpose: In dental diagnostics, the use of periapical X-ray images to assess the loss of implant systems and their surrounding bone tissue is crucial. With the increasing application value of artificial intelligence technology in the field of radiographic image analysis, this study aims to develop a deep learning model that uses periapical radiographs to identify and classify dental implant systems, as well as measure the extent of marginal bone loss around the implants.
    Materials and Methods: This study utilized a dataset composed of 800 periapical X-ray images, which were divided into training, validation, and testing sets. The latest object detection deep learning algorithm (You Only Look Once vision 7; YOLO v7) was applied to identify implants and the degree of surrounding bone loss. The model's performance was evaluated using key indicators such as a mean Average Precision (mAP), precision, recall, and F1 score.
    Results and Discussion: The results showed that the model achieved an overall performance precision of 0.94, recall of 0.92, F1 score of 0.93, and an mAP of 0.94. In identifying the degree of marginal bone loss around implants, the model demonstrated a precision of 0.90, a recall of 0.84, an F1 score of 0.87, and mAP of 0.86. For non-implant marginal bone loss, t the model exhibited a precision of 0.97, a recall of 0.95, an F1 score of 0.96, and mAP of 0.97. In implant system identification, the model's precision ranged from 0.90 to 0.99, recall ranged from 0.86 to 0.98, F1 score ranged from 0.92 to 0.96, and mAP ranged from 0.95 to 0.98. The YOLO v7 model accurately identifies implants and their surrounding bone tissue loss from periapical radiographs. Early prediction of peri-implant bone loss helps dentists to promptly identify and treat peri-implantitis. This technology provides valuable support and practical applications for dental professionals and patients facing implant-related issues.
    描述: 博士
    指導教授:鄧乃嘉
    共同指導教授:張維仁
    口試委員:黃豪銘
    口試委員:戴敏育
    口試委員:藍萬烘
    口試委員:鄧乃嘉
    口試委員:張維仁
    資料類型: thesis
    顯示於類別:[牙醫學系] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML0檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋