English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2537250      線上人數 : 213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63440


    題名: 探勘臨床大腸癌數據並導入機器學習演算法建立癌症早期預測模型
    Using Clinical Laboratory Data of Colorectal Cancer By Importing Machine Learning Algorithm To Build Early Cancer Prediction Model
    作者: 張雨婷
    CHANG, YU-TING
    貢獻者: 醫學檢驗暨生物技術學系碩士在職專班
    林景堉
    關鍵詞: 大腸癌;大腸炎;機器學習
    Colorectal cancer;Colitis;Machine learning
    日期: 2023-01-12
    上傳時間: 2024-01-22 13:23:14 (UTC+8)
    摘要: 大腸直腸癌(Colorectal cancer, CRC)為全球排名第四的癌症死亡原因,而在衛生福利部國民健康署(國健署)2019年的癌症登記報告中統計,台灣癌症人數最多的亦為大腸直腸癌。其中大腸息肉為大腸直腸癌的風險因子。除了息肉為癌變的風險因素,在發炎性腸道疾病(Inflammatory bowel disease, IBD)的病人中,發生大腸直腸癌的風險也相對較高。本研究為了開發大腸直腸癌的預測模型,收集臺北醫學大學臨床研究資料庫(Taipei Medical University Clinical Research Database, TMUCRD)所提供的臨床數據,包含臺北醫學大學附設醫院7,747人,病患為被診斷為大腸直腸癌(CRC)或大腸炎(Colitis)、息肉(Polyp)。接著將利用Python進行資料分析,演算法分別使用Logistic Regression、Decision Tree、Random Forest、SVM、Extreme Gradient Boosting(XGBoost)以及LightGBM建立預測模型。結果在兩院的CRC與Colitis中,最適合的作為預測模型的是LightGBM,結果為Accuracy 85.5%、Sensitivity 84.3%、Specificity 86.6%、AUC 0.919,檢驗項目為CEA與RBC。在未來可以結合CEA與RBC做更一步的研究,以利未來可以在大腸炎或息肉的病人中,及早發現癌症的可能性,並可以及早做治療。
    Colorectal cancer (CRC) is the fourth leading cause of cancer death in the world, and according to the 2019 cancer registration report of The Health Promotion Administration (HPA) of the Ministry of Health and Welfare, colorectal cancer has the largest number of cancers in Taiwan. Among them, colorectal polyps are risk factors for colorectal cancer. In addition to polyps being a risk factor for cancer, patients with inflammatory bowel disease also have a relatively higher risk of developing colorectal cancer. In order to develop a prediction model for colorectal cancer, this study collected clinical data provided by the Taipei Medical University Clinical Research Database (TMUCRD), including 7747 people from the Taipei Medical University Hospital (TMUH), the patients were diagnosed with colorectal cancer, colitis or polyps. Next, Python will be used for data analysis, and the algorithms will use logistic regression, decision tree, random forest, SVM, Extreme Gradient Boosting (XGBoost) and lightGBM to build prediction models. As a result, lightGBM is the most suitable prediction model for CRC and colitis. TMUH had accuracy 85.5%, sensitivity 84.3%, specificity 86.6%, AUC 0.919. The clinical laboratory test items of TMUH are CEA and RBC. In the future, we can combine CEA and RBC for further research. And in patients with colitis or polyps, the possibility of cancer can be detected early, and treatment can be done early.
    描述: 碩士
    指導教授:林景堉
    委員:林景堉
    委員:陳威戎
    委員:蘇家玉
    資料類型: thesis
    顯示於類別:[醫學檢驗暨生物技術學系所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML76檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋