English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 44607/57715 (77%)
造訪人次 : 1621481      線上人數 : 97
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63438


    題名: 以資料探勘技術開採臨床骨質疏鬆數據並導入機器學習開發早期預測模型
    Model for Prediction of Early Osteoporosis by Exploration Clinical Data with Machine Learning Approach
    作者: 楊文瑩
    YANG, WEN-YING
    貢獻者: 醫學檢驗暨生物技術學系碩士在職專班
    林景堉
    關鍵詞: 低骨量;骨質疏鬆症;機器學習;訓練模型
    osteopenia;osteoporosis;machine learning;training models
    日期: 2023-07-06
    上傳時間: 2024-01-22 13:23:10 (UTC+8)
    摘要: 隨著人口結構日益高齡化,預防和提前預測骨質疏鬆症的發生已成為一個重要的公共衛生議題。目前,診斷骨質疏鬆症主要依賴雙能量X 光吸收儀(DXA)測量骨礦物質密度(BMD)。本研究收集了1,919 位骨量異常患者的數據,並利用資料探勘和機器學習技術,從中提取相關檢驗項目的特徵,建立了一個用於檢測低骨量和骨質疏鬆的模型。
    在這項研究中,我們採用了決策樹、隨機森林和邏輯回歸等三種演算法作為機器學習模型,並利用混淆矩陣來評估比較模型的效能。每個訓練模型的曲線下面積(AUROC)在決策樹中為 0.692,在隨機森林中為 0.784,在邏輯回歸中為 0.693。當我們新增了身體質量指數(BMI)這一項特徵後,模型的AUROC 值提高至0.800。在隨機森林模型中,年齡、性別、身高、高密度脂蛋白膽固醇(HDL-c)和體重被認為是重要的特徵。
    本研究評估了用於預測正常骨量和異常骨量人群的機器學習模型的準確性。透過進一步分析基本資料描述和特徵重要性,我們發現檢驗項目中的高密度脂蛋白膽固醇(HDL-c)在檢測骨量方面具有潛在的指標價值。
    With the aging population, preventing and predicting osteoporosis has become an important public health issue. Currently, the diagnosis of osteoporosis relies on dual-energy X-ray absorptiometry (DXA) to measure bone mineral density(BMD). In this study, data from 1,919 patients with abnormal bone mass were collected, and data mining and machine learning techniques were used to extract features related to relevant laboratory tests in order to establish a model for detecting osteopenia and osteoporosis.
    Three machine learning algorithms: decision tree, random forest, and logistic regression, were employed in this study, and the performance of these models was evaluated using a confusion matrix. The area under the receiver operating characteristic curve (AUROC) for each trained model was 0.692 for decision tree, 0.784 for random forest, and 0.693 for logistic regression. After incorporating the new feature of body mass index (BMI), the AUROC value of the model improved to 0.800. Age, gender, height, high-density lipoprotein cholesterol (HDL-c), and weight were identified as important features in the random forest model.
    This study assessed the accuracy of machine learning models in predicting normal and abnormal bone mass populations. Through further analysis of demographic characteristics and feature importance, it was discovered that HDL-c, a laboratory test parameter, has potential as an indicator for bone mass detection.
    描述: 碩士
    指導教授:林景堉
    委員:林景堉
    委員:潘玟?
    委員:陳威戎
    資料類型: thesis
    顯示於類別:[醫學檢驗暨生物技術學系所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML56檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋