English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2535749      線上人數 : 265
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63368


    題名: 建立最佳化的多基因風險分數預測台灣乳癌風險
    Developing an Optimized Polygenic Risk Score for Breast Cancer in Taiwan
    作者: 王昱鈞
    WANG, YU-CHUN
    貢獻者: 醫學資訊研究所碩士班
    邵于宣
    蕭自宏
    關鍵詞: 多基因風險分數;單核?酸多態性;全基因組關聯研究;乳癌風險預測
    Polygenic risk score;Single nucleotide polymorphism;Genome-wide association study;Breast cancer risk prediction
    日期: 2023-07-13
    上傳時間: 2023-12-15 16:09:12 (UTC+8)
    摘要: 研究動機:本研究旨在解決台灣乳癌風險預測中缺乏針對自己族群的多基因風險分數(Polygenic risk score, PRS)的問題,並希望建構出最佳化的PRS方法,以提升乳癌風險預測的效果。

    方法:使用台灣精準醫療計畫(Taiwan Precision Medicine Initiative, TPMI)的台中榮民總醫院參與者,共有1787名女性乳癌病患,並採用三種方式建構台灣人群的乳癌多基因風險分數。第一種方式當中利用歐洲預測效果最好的313個單核?酸多態性(Single Nucleotide Polymorphism, SNP)的PRS建構。第二種方式則是統整112個來自PGS catalog的乳癌PRS,並使用C+T的方法作為建構。第三種方式中使用全基因組的資料作為輸入機器學習模型的特徵,透過Lasso regression進行特徵選擇。

    結果:利用歐洲預測效果最好的313個SNP的PRS建構出272-SNP PRS,在驗證集的效果為AUC=0.580,OR per SD=1.34(95%CI:1.12-1.59)。第二種方式統整112個來自PGS catalog的乳癌PRS,並使用C+T的方法作為建構,其效果為AUC=0.587,OR per SD=1.39(95%CI:1.17-1.66)。在第三種方式中使用全基因組的資料作為輸入機器學習模型的特徵,透過Lasso regression進行特徵選擇,選出742個SNP建構PRS,效果為AUC=0.564,OR per SD=1.27(95%CI:1.07-1.50)。

    結論:統整PGS catalog乳癌PRS而選擇出的SNP,在clumping R2參數為0.8,p-Value小於10-2的1,337個SNP,搭配272-SNP PRS有最佳的效果,AUC=0.594,OR per SD=1.42(95%CI:1.19-1.63)。為目前使用台灣族群發表的論文中預測效果最佳的。
    Motivation:
    This study aims to address the lack of population-specific polygenic risk score (PRS) for breast cancer risk prediction in Taiwan and to enhance the effectiveness of breast cancer risk prediction through the development of optimized methods based on PRS.

    Methods:
    A total of 1787 female breast cancer patients from the Taiwan Precision Medicine Initiative (TPMI) at the Taichung Veterans General Hospital. The PRS for breast cancer in the Taiwanese population has been established using three distinct approaches. In the first approach, the PRS was constructed using the best-performing 313 single nucleotide polymorphisms (SNPs) for breast cancer risk prediction in European populations. In the second approach, 112 breast cancer PRS from the PGS catalog were integrated, and the clumping and p value thresholding (C+T) method was used for construction. The third approach involved using genetic variants data as input for a machine learning model, and Lasso regression was employed for feature selection.

    Results:
    a 272-SNP PRS for Taiwanese breast cancer was created using the best-performing 313-SNP PRS from European. Area under the curve (AUC) for the validation set was 0.58, and the odds ratio per standard deviation (OR per SD) was 1.34 (95% confidence interval [CI]: 1.12-1.59). In the second approach, 112 breast cancer PRS from the PGS catalog were integrated, and the performance was achieved using the C+T method. The AUC was 0.587, and the OR per SD was 1.39 (95% CI: 1.17-1.66). The third approach involved using genetic variants data as input for a machine learning model, and Lasso regression is used to select the features. The selected 742 SNPs were used to construct the PRS, and the results showed an AUC of 0.564 and an OR per SD of 1.27 (95% CI: 1.07 - 1.50).

    Conclusions:
    The SNP selection from integrating the PGS catalog for breast cancer PRS resulted in 1337 SNPs with a clumping R2 parameter of 0.8 and a p-Value less than 10-2. The highest performance was achieved by combining these 1337 SNPs with the previously developed 272-SNP PRS, which generated an AUC of 0.594 and an OR per SD of 1.42 (95% CI: 1.19-1.63). The prediction performance is optimal among the papers currently published using Taiwanese populations.
    描述: 碩士
    指導教授:邵于宣
    共同指導教授:蕭自宏
    委員:張偉嶠
    委員:吳育瑋
    委員:李元綺
    委員:邵于宣
    委員:蕭自宏
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML98檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋