English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45449/58625 (78%)
造訪人次 : 2562777      線上人數 : 152
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63367


    題名: 自動化醫學人工智慧用藥安全系統之跨國確效研究
    Assessing the Cross-national Transferability of an Automatic Medical Artificial Intelligence-based Prescription Safety System
    作者: 靳嚴博
    CHIN, YEN-PO
    貢獻者: 醫學資訊研究所博士班
    李友專
    關鍵詞: 機器學習;病人安全;警示疲勞;臨床決策支持系統;用藥安全系統;醫學人工智慧;聯盟式學習
    Machine learning;Patient safety;Alert fatigue;Clinical decision support system;Prescription safety system;Medical artificial intelligence;Federated learning
    日期: 2022-12-26
    上傳時間: 2023-12-15 16:09:09 (UTC+8)
    摘要: 研究背景:
    當今使用的大多數用藥安全警示系統都是基於規則式的邏輯架構建立;然而,這些警示系統的準確性往往不盡理想,進而導致警示疲勞。為了解決這個問題,先前研究人員構建了基於台灣健保資料庫的人工智慧機器學習用 藥錯誤警示系統。不過,這種基於機器學習的用藥錯誤警示系統是否具備跨國可應用性,目前尚未有定論。

    研究目的:
    本研究檢驗了人工智慧機器學習用藥錯誤警示系統的跨國可應用性,以及聯盟式學習方法是否可以進一步提高該機器模型的準確性。

    研究材料與方法:
    研究材料包括來自美國兩個大型醫療中心的 667,572 份的門診處方籤。我 們的機器學習模型用於構建初始模型、當地模型和混合模型。 初始模型是 基於台灣健保資料庫的 13 億筆處方籤開發完成。我們另外使用聯盟式學習 策略訓練了混合模型。兩名的醫師評估者將測試處方集分類為可解釋或未 能解釋,進而用於評估模型性能。

    結果:
    在將處方分類為可解釋或未能解釋方面,兩位醫師評估者之間的一致性達 到顯著水準。閾值範圍為 0.5 到 1.5,初始模型的警示準確度範圍為 75% 到 78%,當地模型為 76% 到 78%,混合模型為 79% 到 86%。

    結論:
    該人工智慧機器學習模型用藥錯誤警示系統在美國數據集中站展現了良好 的跨國可應用性。透過聯盟式學習結合當地醫院的數據集可以進一步提高 該模型的準確性。
    Research Background:
    The majority of the medication safety systems in use today are rule-based; however, these systems often have poor accuracy, which can lead to alert fatigue. To address this problem, researchers have constructed a model through machine learning (ML) using the Taiwan national health insurance database (TNHID) in the past. However, it is not clear whether or not this model can be transferred to healthcare systems in other countries.

    Research purposes:
    The current research assesses the cross-national transferability of a ML-based prescription error detection system. We also evaluated whether federated learning could improve the system's transferability.

    Methods:
    The study material includes 667,572 prescriptions from two hospitals in the United States. We constructed the Taiwan (TW) model, the United States (US) model, and the Hybrid (HB) model following the appropriateness of the prescription model method. The TW model was developed using 1.3 billion prescriptions from the TNHID. A validation set consisting of 9% of the prescriptions was randomly sampled, and the remaining 91% served as the local training set for the US model. Using a federated learning method, the HB model integrated the association values with the highest co-occurrence frequency from both the TW and US models. Two independent physician reviewers classified the test set as substantiated or unsubstantiated, which was then used to evaluate model performance.

    Result:
    As for classifying whether the prescription is substantiated or unsubstantiated, the inter-rater agreement was significant. With varying thresholds, the alert accuracy for the original model ranged from 75% to 78%, for the local model from 76% to 78%, and for the hybrid model from 79% to 86%.

    Conclusion:
    Our prescription error alert system based on TW clinical data presents a reasonable cross-national transferability among US clinical data. Combining local US data through federated learning could further improve the system’s performance.
    描述: 博士
    指導教授:李友專
    委員:吳俊穎
    委員:郭博昭
    委員:雪必兒
    委員:張資?
    委員:李友專
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML90檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋