English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45074/58250 (77%)
造訪人次 : 2445307      線上人數 : 182
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63364


    題名: Machine Learning-Based Emotion Recognition of Nonverbal Communication: Initial Development of Artificial Empathy
    作者: RAHMANTI, ANNISA RISTYA
    貢獻者: 醫學資訊研究所博士班
    李友專
    楊軒佳
    關鍵詞: 非語言溝通;醫患互動;人工同情心;面部情感識別;語音情感識別;機器學習
    nonverbal communication;doctor-patient interaction;artificial empathy;facial emotion recognition;speech emotion recognition;machine learning
    日期: 2023-07-21
    上傳時間: 2023-12-15 16:09:01 (UTC+8)
    摘要: 本研究深入探討了在醫療保健環境中,特別是在皮膚科門診,通過解釋非語言線索(如面部表情和語音調)來理解同情心參與的情況。在這項研究中,我們識別並分析了非語言模仿的實例,包括面部、音頻和結合音頻-面部的行為。這使我們能夠對醫生所表現出的同情心參與度進行分類,特別強調區分自發和有意的模仿。通過使用面部情感識別(FER)和語音情感識別(SER)系統進行多模態分析,我們發現醫生經常使用中性面部表情,可能是為了保持情感平衡的互動。此外,我們注意到,在諮詢結束時,快樂的表情有所增加,這意味著這些會議的情感氣氛有所提升。我們的機器學習模型在檢測自發模仿方面表現出了強大的結果,尤其是面部模仿模型,在區分低和高同情心水平方面表現出強大的區別能力。然而,我們最值得注意的發現是有意的模仿:音頻-面部模仿模型,儘管其區分能力略低於面部模型,但在面部表情不可見的情況下非常有效,因此在我們日益面罩化的醫療環境中,這是一種無價的工具。我們還發現,患者年齡和性別等人口因素在所有模型中都起到了重要的作用,因此強調了它們在預測同情心中的重要性。我們的發現為醫療保健環境中非語言模仿、同情心和患者滿意度之間的複雜關係提供了寶貴的洞見,並指出了提高同情心溝通和患者護理的可能途徑。
    This research delves into the understanding of empathetic engagement within healthcare settings, specifically in dermatology outpatient clinics, by interpreting non-verbal cues such as facial expressions and tone of voice using machine learning models. In this study, we identified and analyzed instances of non-verbal mimicry, which include facial, audio, and combined audio-facial behaviors. This allows us to classify the degrees of empathetic engagement displayed by physicians, with a special emphasis on distinguishing between spontaneous and intentional mimicry. Using Facial Emotion Recognition (FER) and Speech Emotion Recognition (SER) systems for a multimodal analysis, we found that physicians often employ neutral facial expressions, likely as a strategy to maintain an emotionally balanced interaction. Moreover, we noted an increase in expressions of happiness towards the end of consultations, implying an enhancement in the emotional atmosphere during these sessions. Our machine learning models demonstrated robust results in detecting spontaneous mimicry, particularly with the facial mimicry model, which showed strong discriminative power between low and high empathy levels. However, our most notable finding relates to intentional mimicry: the audio-facial mimicry model, although demonstrating a slightly lower discriminative ability than the facial model, proved extremely effective in situations where facial expressions were not visible, therefore making it an invaluable tool in our increasingly masked healthcare environment. We also found that demographic factors such as patient age and gender played a significant role across all models, thereby underlining their importance in predicting empathy. Our findings present invaluable insights into the intricate relationship between non-verbal mimicry, empathy, and patient satisfaction levels in healthcare settings and point to potential avenues for enhancing empathetic communication and patient care.
    描述: 博士
    指導教授:李友專
    共同指導教授:楊軒佳
    委員:邱泓文
    委員:郭博昭
    委員:唐高駿
    委員:楊軒佳
    委員:李友專
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML73檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋