English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2522678      線上人數 : 179
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63357


    題名: 使用非監督式機器學習解析放射手術於大腦動靜脈畸形治療計畫 之效能比較
    Comparison of Performance in Cluster Analysis of Radiosurgery Planning for Cerebral Arteriovenous Malformation (AVM) among Different Unsupervised Machine Learning Algorithms
    作者: 林庭右
    LIN, TING-YU
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    彭徐鈞
    關鍵詞: 腦動靜脈畸形;非監督式機器學習;放射手術;高斯混合模型
    Cerebral arteriovenous malformation;Unsupervised machine learning;Radiosurgery;Gaussian Mixture Model
    日期: 2023-07-14
    上傳時間: 2023-12-15 14:37:43 (UTC+8)
    摘要: 大腦動靜脈血管畸形(Cerebral Arteriovenous Malformation)為一種先天的血管瘤,其因為動脈與靜脈之間直接相通,缺少微血管因而使靜脈壓力上升,故有破裂的可能。大腦動靜脈血管畸形的大小會隨時間增大,其臨床症狀包含頭痛、頭暈或癲癇等,而破裂則會造成出血性中風進而對患者造成長期甚至永久性的傷害。其處理方式包含保守性觀察、外科手術治療以及放射線治療等。
    放射手術(Radiosurgery)為ㄧ種非侵入性治療大腦動靜脈血管畸形的方法。其利用患者神經影像資料,經過電腦模擬運算產生之治療計畫,將高能量放射線束自四面八方照射至計畫治療的區域以提高病灶接受能量,以及降低放射線束對正常腦組織的傷害。然而由於現今依然缺乏對大腦動靜脈血管畸形血管瘤自動化影像分析的方法,因此在治療大腦動靜脈血管畸形的放射手術、影像表現與其臨床反應的研究依然甚少。
    本研究回溯分析臺灣一醫學中心自1993年至2014年間,經臨床診斷患有大腦動靜脈血管畸形,並且接受加馬刀放射手術治療之1044位病患的放射手術治療計畫以及腦部核磁共振影像(Magnetic Resonance Imaging)資料。患者的加馬刀放射手術治療計畫中被規劃為血管瘤處的核磁共振影像將被提取,並經由三位神經放射醫師分別獨立標註為病灶(Nidus)、正常腦組織(Brain tissue)以及腦脊髓液(Cerebrospinal Fluid)等三種不同的成分;而本研究利用非監督式機器學習中之K-平均演算法(K-Means)、模糊C聚類(Fuzzy C-means Clustering)以及高斯混合模型(Gaussian Mixture Model)等三種分群法,利用Python語言編程,對上述血管瘤影像進行分群。三種不同非監督式學習模型的預測結果將會與人工標註之結果相互比較,預期能從中獲取最高準確度的模型。
    本研究旨在建立大腦動靜脈血管畸形影像自動分群之之人工智慧模型以及不同演算法的效能比較。研究結果顯示使用非監督式機器學習中的模糊C聚類、K-平均演算法以及高斯混合模型皆是潛在的優良分析方法,而高斯混合模型可最有效地分辨出病灶、正常腦組織與腦脊髓液。利用非監督式機器學習的演算法,可協助神經放射醫師在進行放射手術治療規劃時,能方便且快速了解其病灶區域之成分以及現行治療計畫對正常組織造成的傷害,提供精準規劃、精準治療的依據。
    Cerebral Arteriovenous Malformation (CAVM) is a congenital cerebral vascular malformation in which arteries and veins are directly connected and lack of capillaries, resulting in the elevation of venous pressure and the potential for rupture. The size of AVM increases over time and its clinical symptoms include headache, dizziness, or epilepsy. When AVM ruptures, it may lead to hemorrhagic stroke and cause long-term or even permanent damage to the patient. Treatment options of the AVM include conservative observation, surgical treatment, and radiation therapy. Radiosurgery is a non-invasive treatment for AVM. It utilizes the patient's neuroimaging data to generate a treatment plan, and then uses high-energy radiation beams from all directions to irradiate the planned treatment area, thus increasing the energy received by the lesion and reducing the damage of the radiation beam to the normal brain tissue. However, due to the lack of automated image analysis methods for AVM, there is still very little research on the radiosurgical treatment, imaging presentation and clinical response of AVM. This study retrospectively analyzed the radiosurgical treatment plans and Magnetic Resonance Imaging (MRI) data of 1044 patients diagnosed with AVM and treated with Gamma Knife radiosurgery from 1993 to 2014 in a medical center in Taiwan. The MRI images of the vascular tumors in the patient's radiosurgical treatment plan were extracted and independently labeled by three neuro-radiologists as nidus, brain tissue and cerebrospinal fluid (CSF), respectively.

    This study aimed to establish an artificial intelligence model for the automatic clustering of cerebral arteriovenous malformation (AVM) images, as well as to compare the performance of different algorithms. The results of this research demonstrated that unsupervised machine learning algorithms, including fuzzy C-means clustering, K-means algorithm, and Gaussian mixture models, showed potential as effective analytical methods. Among these, the Gaussian mixture model exhibited the highest performance in distinguishing between nidus, brain tissue, and cerebrospinal fluid. By utilizing unsupervised machine learning algorithms, neuro-radiologists can benefit from a convenient and rapid understanding of the composition of AVM regions and the potential damage to normal tissues caused by current treatment plans during radiotherapy treatment planning. This approach provides a reliable tool for assisting in treatment planning, allowing for more precise and effective treatment strategies, and providing valuable insights into the composition and impact of the lesion and treatment plan.
    描述: 碩士
    指導教授:彭徐鈞
    委員:彭徐鈞
    委員:劉文德
    委員:楊懷哲
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML61檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋