English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2514332      線上人數 : 220
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63353


    題名: 運用機器學習演算法和臨床醫療數據以預測腎病症候群患者之病理分類研究
    Using Medical Data and Machine Learning Algorithms to Predict Pathologic Classification in Patients with Nephrotic Syndrome
    作者: 楊智淵
    YANG, CHIH-YUAN
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    蘇家玉
    關鍵詞: 腎病症候群;尿液常規檢查;血液常規檢查;機器學習;國際疾病與相關健康問題統計分類第十版
    Nephrotic syndrome ( NS );urine routine examination;blood routine examination;machine learning;International Statistical Classification of Diseases and Related Health Problems tenth revision ( ICD10 )
    日期: 2023-07-20
    上傳時間: 2023-12-15 14:37:34 (UTC+8)
    摘要: 腎病症候群 ( Nephrotic Syndrome,NS ) 是由一群會造成腎臟功能異常的疾病總稱,最常見的病理症狀如蛋白質由尿中流失、血液白蛋白降低等。目前腎病症候群雖可透過理學檢查、尿液常規檢查、血液常規檢查來做診斷,但往往仍然無法釐清病因。導致腎病症候群的原因很多,不同的病理變化會對應不同的治療處置,尚須以侵入性之腎臟切片進行確認。倘若有更即時性且非侵入性的評估方式,對於臨床診斷及治療會具有更大的價值。

    本實驗使用臺北醫學大學附設醫院、臺北市立萬芳醫院、衛生福利部雙和醫院及馬偕紀念醫院共四間醫院資料庫,2011年01月至2021年06月診斷為腎病症候群之病患,其抽血及驗尿報告搭配國際疾病與相關健康問題統計分類第十版( ICD-10 ),進行腎臟切片分型的預測。使用K-NN Imputer將遺失值補值,並將data區分為80% Training Set、20% Test Set。Training set使用SMOTE處理不平衡資料,並以5-fold Cross-Validation訓練Random Forest、XGBoost、Logistic Regression、SVM及K-NN等5種模型,最終以Accuracy及AUC作為評估方式。

    在ICD-10編碼N04.0腎病症候群伴有輕微腎絲球?常族群中,Random Forest之Accuracy 83.0%、AUC 0.697;N04.1腎病症候群伴有局部及節段性腎絲球病灶,Random Forest之Accuracy 88.4%、AUC 0.886;N04.2腎病症候群伴有瀰漫性膜性腎絲球腎炎,在Random Forest之Accuracy分別為86.8%、AUC 0.833。整體而言,使用Random Forest不論在哪個分類族群中,均可獲得不錯的表現,對於醫師及病人均可提供另一個診斷協助。
    Nephrotic Syndrome (NS) is a collective term for a group of diseases that cause abnormal kidney function. The most common pathological symptoms include the loss of protein in urine and decreased blood albumin levels. Currently, NS can be diagnosed through physical examinations, urinalysis, and blood tests, but often the underlying cause remains unclear. There are many causes of Nephrotic Syndrome, and different pathological changes correspond to different treatment approaches, which often require invasive kidney biopsies for confirmation. Having a more real-time and non-invasive assessment method would greatly enhance the value of clinical diagnosis and treatment.

    In this study, data from four hospitals, including Taipei Medical University Hospital, Wan Fang Hospital, Shuang Ho Hospital, and Mackay Memorial Hospital, were used. The data covered patients diagnosed with Nephrotic Syndrome from January 2011 to June 2021. Blood and urine reports were matched with the tenth edition of the International Statistical Classification of Diseases and Related Health Problems ( ICD-10 ) for predicting kidney biopsy findings. Missing data were imputed using K-NN Imputer, and the data were divided into an 80% training set and a 20% test set. The training set was processed using SMOTE to handle imbalanced data and trained using 5-fold cross-validation on five models: Random Forest, XGBoost, Logistic Regression, SVM, and K-NN. Accuracy and AUC were used as evaluation metrics.

    In the subgroup of patients with ICD-10 code N04.0 for Nephrotic syndrome with minor glomerular abnormality, Random Forest achieved an accuracy of 83.0% and an AUC of 0.697. For N04.1, which represents Nephrotic syndrome with focal and segmental glomerular lesions, Random Forest achieved an accuracy of 88.4% and an AUC of 0.886. In the case of N04.2, indicating Nephrotic syndrome with diffuse membranous glomerulonephritis, the accuracies for Random Forest were 86.8%, with an AUC of 0.833. Overall, Random Forest demonstrated good performance across all classification subgroups, providing another diagnostic aid for physicians and patients.
    描述: 碩士
    指導教授:蘇家玉
    委員:林彥仲
    委員:蘇家玉
    委員:林于翔
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML80檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋