English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2514332      線上人數 : 220
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63346


    題名: 兩階段誘導式深度學習應用於多種類包裝藥品之圖像分類
    Two-Stage Induced Deep Learning for Diverse Packaging Drugs Image Classification
    作者: 游育新
    YOU, YU-SIN
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    林于翔
    關鍵詞: 卷積神經網路;深度學習;藥品圖像分類;誘導式深度學習;兩階段誘導式深度學習
    Convolutional neural network;Deep learning;Drug image classification;Induced deep learning;Two-stage induced deep learning
    日期: 2023-07-14
    上傳時間: 2023-12-15 14:37:21 (UTC+8)
    摘要: 醫療疏失經統計為美國前三大死因,而用藥錯誤佔醫療疏失中相當大的比例,然而,用藥錯誤造成的原因大多屬於可避免之因素,這促使了世界衛生組織 (WHO) 發起"無傷害用藥運動" (Medication Without Harm Campaign) 以減少用藥錯誤對病患帶來的重大風險,目前用藥錯誤常見的防範措施包括高人字體 (Tall-man lettering)、自動配藥機和條碼管理系統,然而,這些傳統的防範措施各有其限制及缺陷。隨著人工智慧的蓬勃發展,近年來許多研究運用了先進的人工智慧技術,對於各種藥品進行自動化分類,研究結果顯示,運用人工智慧技術於藥品的自動化分類,無論是在分類準確率或推理速度,皆獲得了極大的進展。儘管人工智慧方法被證明可有效的運用於藥品自動化分類,但過往研究主要仍集中在對於無包裝之顆粒藥品、或者是單一包裝藥品進行自動化分類,然而,在實務上,醫療機構內存有上千種具不同包裝類型的相似藥品,在調劑過程中將大幅的增加配藥錯誤的風險。有鑑於此,本研究提出了一種新穎的兩階段誘導式深度學習 (TSIDL) 方法,以針對多種類不同包裝的相似藥品圖像進行自動化分類。實驗結果顯示,本研究所提出的兩階段誘導式深度學習方法,在108類不同包裝藥品圖像的分類任務之中,達到了99.39%的傑出分類準確率,除此之外,每張藥品圖像所需要的推理時間僅需3.12毫秒。以上實驗結果顯示了本研究所提出之兩階段誘導式深度學習方法,在未來的自動化配藥系統中具有實際應用的淺力,進而可有效降低用藥錯誤對病患帶來的重大風險。
    Medical errors are the third leading cause of death in the United States, with medication errors being a significant preventable contributor. This has prompted the World Health Organization (WHO) to initiate the Medication Without Harm Campaign to prevent such errors. Among these errors, dispensing errors are crucial. Current prevention methods include tall-man lettering, automated dispensing machines, and barcode systems. In 2016, the National Library of Medicine (NLM) organized the Pill Image Recognition Challenge to encourage the development of algorithms for classifying pills. Furthermore, there have been numerous recent studies on the automatic classification of single-packaged drugs. Previous studies have mainly focused on investigating unpackaged pills or drugs with single-packaging. However, there are currently limited studies on the classification of drugs with diverse packaging, despite the presence of thousands of such drugs within healthcare institutions during the dispensing process, which significantly increases the risk of dispensing errors. In this study, we proposed a novel two-stage induced deep learning (TSIDL) framework to classify diverse packaging drugs. The results demonstrate that the proposed TSIDL method outperforms state-of-the-art CNN models in all classification metrics. Notably, it achieved a state-of-the-art accuracy of 99.39%. Moreover, this study also demonstrated that the TSIDL method achieved an inference time of only 3.12 ms per image. These results highlight the potential of real-time classification for similar drugs with diverse packaging and their applications in future dispensing systems.
    描述: 碩士
    指導教授:林于翔
    委員:林于翔
    委員:彭徐鈞
    委員:劉文德
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML90檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋