English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2514390      線上人數 : 242
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63309


    題名: 利用超高效液相層析法串聯質譜儀分析大腸直腸癌之凝集素捕捉蛋白體與代謝體進行生物標記的開發
    The Lectin Captured Proteomic and Metabolomic Approach with UHPLC-MS/MS for Biomarker Development in Colorectal Cancer
    作者: 蔡奕戎
    TSAI, I-JUNG
    貢獻者: 醫學生物科技博士學位學程
    林景堉
    關鍵詞: 生物標記;層析質譜儀;大腸直腸癌;機器學習
    biomarker;LC-MS/MS;CRC;machine learning
    日期: 2023-01-12
    上傳時間: 2023-12-11 13:53:00 (UTC+8)
    摘要: 大腸直腸癌(colorectal cancer, CRC)是目前世界上致死率排行第三的癌症。目前,美國食品藥物管制局已批准的血液腫瘤標記檢測項目,包含了胚胎癌抗原(carcinoembryonic antigen, CEA)、CA19-9和CA125。然而,這些血液腫瘤標記多半被用於當作大腸直腸癌的預後生物標記,但他在診斷大腸直腸癌的靈敏度較低。因此,我們的研究目的是應用蛋白體學與代謝體學開發新的早期大腸直腸癌診斷臨床生物標記組。我們使用的質譜儀方法包含了nanoLC-MS/MS、UPLC-QTOF-MS、標記LC-MS/MS和穩定同位素標記MRM MS,並且使用機器學習演算法和邏輯式回歸(Logistic regression)分析早期大腸直腸癌患者、晚期大腸直腸癌患者和健康對照組的血漿樣本。我們的研究中,我們發現了356個胜肽、驗證了差異表達的6個胜肽,並且最終在286個血漿樣本(80 HCs與206 CRC)中,以半定量的方式測量三個WGA (Wheat germ agglutinin)結合胜肽。本研究中所發現的新穎生物標記PF454–62、ITIH4429–438與APOE198–207在大腸直腸癌的診斷中靈敏度為84.5%、特異性為97.5%、AUC為0.96。除此之外,我們在非標記性代謝體學的分析中,發現了1147個有差異的化合物,驗證了其中的2個極性化合物與3個非極性化合物,並且最終以非極性化合物的組合C16 dihydroceramide、 6,9,12,15,18,21-tetracosahexenoic acid、1-octadecyl(2Z)-2-butendioate,以隨機森林模型進行訓練與驗證,獲得了靈敏度85.7%、特異性87.0%、AUC為0.96。
    Colorectal cancer (CRC) is currently the third leading cause of cancer related mortality in the world. U.S. Food and Drug Administration-approval circulating tumor markers, including carcinoembryonic antigen, carbohydrate antigen (CA) 19-9 and CA125, were used as prognostic biomarker of CRC that attributed to low sensitivity in diagnosis of CRC. Therefore, our purpose is to develop a novel strategy for novel clinical biomarker for early CRC diagnosis. The proteomic and metabolomic techniques were applied in our study. We used mass spectrometry (MS) methods such as nanoLC-MS/MS, UPLC-QTOF-MS, targeted LC-MS/MS, and stable isotope-labeled multiple reaction monitoring (MRM) MS coupled to machine learning algorithms and logistic regression to analyze plasma samples from patients with early-stage CRC, late-stage CRC, and healthy controls (HCs). Based on our methods, 356 peptides were identified, 6 differential expressed peptides were verified, and finally three peptides corresponding wheat germ agglutinin (WGA) captured proteins were semi-quantitated in 286 plasma samples (80 HCs and 206 CRC). The novel peptide biomarkers combination of PF454-62, ITIH4429-438, and APOE198-207 achieved sensitivity 84.5%, specificity 97.5% and an AUC of 0.96 in CRC diagnosis. In addition, 1147 compounds were identified with untargeted metabolomic analysis, 2 polar compounds and 3 non-polar compounds were verified, and finally a combination of non-polar compounds including C16 dihydroceramide, 6,9,12,15,18,21-tetracosahexenoic acid, and 1-octadecyl(2Z)-2-butendioate to train and validate with random forest classifier and received a sensitivity of 85.7%, a specificity of 87.0%, and an AUC value of 0.956 for early-stage CRC.
    描述: 博士
    指導教授:林景堉
    委員:林景堉
    委員:蘇家玉
    委員:蔡伊琳
    委員:陳威戎
    委員:李振綱
    資料類型: thesis
    顯示於類別:[醫學生物科技博士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML81檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋