English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45279/58455 (77%)
造訪人次 : 2490138      線上人數 : 147
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63297


    題名: 以機器學習方法預測中風後30天內再入院情形
    Prediction of 30-Day Readmission After Stroke Using Machine Learning
    作者: 張曦云
    CHANG, HSI-YUN
    貢獻者: 醫務管理學系碩士班
    簡文山
    關鍵詞: 腦中風;再住院;機器學習;風險因子;真實世界的數據
    stroke;readmission;machine learning;risk factors;real-world data
    日期: 2023-06-20
    上傳時間: 2023-12-11 13:22:02 (UTC+8)
    摘要: 研究目的: 運用機器學習建立中風後 30 天內再住院的風險預測模型,並根據最佳模型結果,進行危險因子的重要性排序說明。
    研究方法: 本研究以次級資料進行分析,蒐集 2012 年 1 月 1 日到 2021 年 12 月 31 日,來自臺北醫學大學三院臨床資料庫的中風住院患者,共 12,933 筆的數據。採羅吉斯回歸、SVM、決策樹、隨機森林、梯度提升機和人工神經網絡,共六種機器學習的演算法,開發用於預測中風出院後 30 天內再住院的風險預測模型。再根據測試組中操作者特徵曲線下面積(AUROC)來選擇最佳模型,進行特徵重要性排序,定義中風患者 30 天內再住院的危險因子。期許能夠幫助臨床醫生及早預測具有高風險再住院情形的中風患者,並使他們能在患者出院前製定符合需求的準備計劃。
    研究結果: 在比較測試組中的六種機器學習的模型後,羅吉斯回歸具有最佳的表現能力,其 AUROC=0.6247,準確性為 0.6322,敏感度為 0.5377,陽性預測值為 0.1415。接著再依據相關係數觀察變數重要性,發現慢性阻塞性肺病(COPD)為影響中風再住院的最重要危險因子,其次為尿道炎及肺炎;影響較小則為血小板抑制劑和中風史。
    結論: 使用羅吉斯回歸分析中風患者 30 天內再住院的危險因子,將會對這些患者的管理精確性和有效性有所幫助。對於患有 COPD 的中風患者,可以提早擬定符合需求的急性後期整合照護計畫(PAC),幫助患者應對疾病帶來的焦慮、抑鬱或其他心理壓力,這在健康結果的教育方面具有實際應用價值。
    Introduction: A risk prediction model for readmission within 30 days after stroke was developed using machine learning techniques. Based on the results of the best-performing model, the importance of risk factors was ranked and explained.
    Method: This study conducted secondary data analysis using a dataset of 12,933 stroke inpatients from the clinical database of Taipei Medical University Hospital, spanning the time January 2012 to December 2021. Six machine learning algorithms, including logistic regression, support vector machine, decision tree, random forest, gradient boosting, and artificial neural network, were adopted to develop a risk prediction model for readmission within 30 days after stroke discharge. The best model was selected based on the area under the receiver operating characteristic (AUROC) in the testing set. Feature importance ranking was then performed to identify the risk factors associated with readmission within 30 days for stroke patients. The aim is to assist clinical physicians in early predicting stroke patients who are at high risk of readmission and enable them to develop tailored preparation plans before patient discharge.
    Result: After comparing the six machine learning models, logistic regression demonstrated the best performance with an AUROC of 0.6247, accuracy of 0.6322, and sensitivity of 0.5377. Furthermore, based on the observed correlation coefficients, the variable importance analysis revealed that chronic obstructive pulmonary disease (COPD) was the most crucial risk factor affecting readmission after stroke. Following COPD, urinary tract infection and pneumonia were identified as significant factors. Variables with relatively less impact included platelet inhibitors and a history of stroke.
    Conclusion: Utilizing logistic regression analysis to identify the risk factors for readmission within 30 days among stroke patients can potentially aid in improving the precision and effectiveness of their management. For stroke patients with COPD, early development of a tailored post-acute care (PAC) plan that meets their specific needs can assist them in coping with anxiety, depression, or other psychological pressures associated with their condition. This holds practical application value in terms of educating patients about health outcomes.
    描述: 碩士
    指導教授:簡文山
    委員:簡文山
    委員:張偉斌
    委員:魏慶國
    資料類型: thesis
    顯示於類別:[醫務管理學系暨研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML105檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋