English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2506100      線上人數 : 201
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63293


    題名: 肝癌復發率及危險因子權重預測-以機器學習分析
    Liver Cancer Recurrence Rate and Weight of Risk Factors Prediction —Analysis by Machine Learning
    作者: 李依蓮
    LEE, I-LIEN
    貢獻者: 醫務管理學系碩士班
    簡文山
    關鍵詞: 肝癌復發;機器學習;風險預測
    Liver Cancer Recurrence;Machine Learning;Risk Factors
    日期: 2023-06-20
    上傳時間: 2023-12-11 13:21:53 (UTC+8)
    摘要: 研究目的:本研究使用羅吉斯迴歸、支持向量機、決策樹、隨機森林、梯度提升及人工神經網路等機器學習演算法,預測可能造成肝癌復發的危險因子,減少肝癌病人復發的機會。
    研究方法:以回溯性世代研究方法,收集2000年至2021年臺北醫學大學臨床研究資料庫中1,201位肝癌病人的相關資料,利用六種機器學習方法將所蒐集之樣本進行隨機分組,建立預測模型,納入人口學變項、生活習慣、過去病史、疾病狀況及治療方式等資?,以準確率、敏感度、特異度、陽性預測值、F1-score及AUC等指標,選擇最準確的演算法,預測可能導致肝癌復發的危險因子。
    研究結果:研究結果顯示,1,201位肝癌病人中共有562人發生肝癌復發,復發率為46.79%。在機器學習模型預測肝癌復發危險因子方面,外部驗證以人工神經網路之模型預測結果最佳,其準確率為0.7399、敏感度為0.7857、特異度為0.6905、陽性預測值為0.6688、AUC為0.7399,再根據此模型分析肝癌復發變項重要程度,以喝酒習慣為造成肝癌復發最重要的危險因子,其次為血型,淋巴管或血管侵犯則為危險因子第三名。建議醫療提供者可將本研究機器學習模型的預測結果作為參考,相信有助於提升病人預後效果,為醫病雙方帶來最大的價值,減少肝癌病人復發的機會。
    Objective: This study uses machine learning algorithms such as logistic regression, support vector machine, decision tree, random forest, gradient boosting, and artificial neural networks to predict the risk factors for liver cancer recurrence and reduce the chances of relapse in liver cancer patients.
    Method: Using a retrospective cohort study design, collected relevant data from 1,201 liver cancer patients in the clinical research database of Taipei Medical University from 2000 to 2021. The collected samples were randomly divided into groups using six machine learning algorithms to build the predictive model. Included data such as demographic variables, lifestyle habits, past medical history, disease condition, and treatment methods. and used indicators like accuracy, sensitivity, specificity, positive predictive value, F1-score, and AUC to select the most accurate algorithm for predicting the risk factors that may lead to liver cancer recurrence.
    Results: The research results revealed that out of the 1,201 liver cancer patients, a total of 562 individuals experienced liver cancer recurrence, the recurrence rate is 46.79%. In terms of predicting the risk factors for liver cancer recurrence using machine learning models, the external validation demonstrated that the artificial neural network model had the best predictive performance. It achieved an accuracy of 0.7399, sensitivity of 0.7857, specificity of 0.6905, positive predictive value of 0.6688, and an AUC of 0.7399. Based on this model, the analysis of liver cancer recurrence identified alcohol consumption as the most significant risk factor, followed by blood type, and third risk factor is lymphatic or vascular invasion. It is suggested that healthcare providers can consider the predictive results of this research's machine learning model as a reference, believing that it will contribute to improving patient prognosis and delivering maximum value to both healthcare providers and patients, thereby reducing the chances of liver cancer recurrence.
    描述: 碩士
    指導教授:簡文山
    委員:魏慶國
    委員:張偉斌
    委員:簡文山
    資料類型: thesis
    顯示於類別:[醫務管理學系暨研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML69檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋