English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2506100      線上人數 : 201
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63282


    題名: 放射治療療程延?天數對乳癌復發的影響
    Effects of prolonged date duration radiotherapy on recurrence of breast cancer
    作者: 黃玉綺
    HUANG, YU-CHI
    貢獻者: 醫務管理學系碩士在職專班
    張偉斌
    關鍵詞: 乳癌復發;放射治療;機器學習
    breast cancer recurrence;radiotherapy;machine learning
    日期: 2023-06-21
    上傳時間: 2023-12-11 11:04:08 (UTC+8)
    摘要: 背景:許多機構與病人因COVID-19疫情隔離或是其他因素而中斷放射治療,而放射治療是需要考量到輻射生物效應,一旦開始不能輕易中斷,否則可能讓癌細胞得以喘息。
    目的:建立一個預測模型能在乳癌病人不同的腫瘤狀態與治療下,其放射治療中斷使療程延長天數造成五年內是否會復發。
    方法:此為一個回溯性研究,使用資料探勘方式建構預測模型。使用兩大醫療機構2004-2021年乳癌癌症登記長表資料,將其分別訂為訓練組與測試組,以訓練組訓練以及優化模型,再以測試組測試,其AUC值須達0.8以上作為優良的模型,再進一步比較靈敏度與準確性。
    結果:臺北市立聯合醫院仁愛院區癌症中心提供386筆資料(復發44/未復發342)做訓練組,台北醫學大學數據中心891筆(復發87/未復發804)做測試組,將112個癌症登記欄位執行合併與排除遺漏值過多欄位後整理使用20個特徵。模型種類篩選結果為隨機森林與CHAID集成模型,進一步篩選特徵發現無法刪除任何特徵,此時AUC值已大於0.8。執行資料平衡訓練模型以增加靈敏度,將訓練組的未復發樣本做隨機抽樣取20%與復發樣本100%,以達到復發:未復發為44:68之比例做模型訓練建構,並且做5次再將模型集成。此時平衡且集成的RF模型測試結果AUC 0.783最佳,CHIAD執行3次集成結果最佳(AUC0.809),再5個RF與3CHAID模型集成後為最後最佳結果AUC值為0.801、靈敏度0.632、準確度0.801。此時,我們將訓練組於測試組的角色對調,使用相同的方式使用測試組來訓練模型,使用訓練組來測試,結果為AUC值0.83、靈敏度0.614、準確度0.782。
    結論:僅使用癌症登記長表欄位做特徵,即可建立出AUC達0.8。最佳模型為RF與CHAID集成模型,平衡資料後結果靈敏度可從0.414提升為0.632。從得到的模型隨機森林中的預測重要性,診斷年齡為第一,RT療程延長天數第二,兩者分數相近,放射治療療程延長天數也為五年後乳癌復發因子。
    Background: Many institutions and patients have experienced interruptions in radiation therapy due to the COVID-19 pandemic or other factors. Radiation therapy, which takes into account radiation biologic effects, should not be easily interrupted once initiated, as it could allow cancer cells to thrive.
    Objective: The objective is to establish a predictive model that can assess the impact of interruptions in radiation therapy on the duration of treatment and the likelihood of recurrence within five years for breast cancer patients in different tumor states and treatments.
    Methods: This is a retrospective study that utilizes data mining techniques to construct the predictive model. Longitudinal registry data from two major medical institutions spanning from 2004 to 2021 for breast cancer cases are used. The data is divided into training and testing sets. The training set is used to train and optimize the model, and the testing set is used to evaluate the model's performance. An area under the curve (AUC) value of 0.8 or higher is considered indicative of a good model. Sensitivity and accuracy are further compared.
    Results: A total of 386 records (44 recurrences, 342 non-recurrences) from Taipei City Hospital, Renai Branch Cancer Center are used for the training set, while 891 records (87 recurrences, 804 non-recurrences) from Taipei Medical University Data Center are used for the testing set. After merging and excluding fields with excessive missing values, 20 features are selected for analysis. The selected model types are Random Forest (RF) and CHAID ensemble models. Feature selection does not result in the removal of any features, and the AUC value exceeds 0.8. To increase sensitivity, the training set is balanced by randomly sampling 20% of the non-recurrence samples and 100% of the recurrence samples, achieving a recurrence-to-non-recurrence ratio of 44:68 for model training and constructing an ensemble model based on 5 iterations. The balanced and integrated RF model achieves the best AUC value of 0.783, while the CHAID model, integrated 3 times, achieves the best result with an AUC of 0.809. The final best result is obtained by integrating 5 RF models and 3 CHAID models, with an AUC value of 0.801, sensitivity of 0.632, and accuracy of 0.801. Furthermore, the roles of the training and testing sets are reversed, and the testing set is used for training while the training set is used for testing. The results yield an AUC value of 0.83, sensitivity of 0.614, and accuracy of 0.782.
    Conclusion: By using only the fields from the cancer registry, a model with an AUC value exceeding 0.8 can be established. The best model is an ensemble of Random Forest (RF) and CHAID models, and balancing the data increases sensitivity from 0.414 to 0.632.
    Based on the predictive importance obtained from the Random Forest model, the most important feature is the age at diagnosis, followed by the duration of radiation therapy (RT). These two factors have similar scores and are considered significant predictors of breast cancer recurrence within five years.
    描述: 碩士
    指導教授:張偉斌
    委員:劉燦宏
    委員:簡文山
    委員:張偉斌
    資料類型: thesis
    顯示於類別:[醫務管理學系暨研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML71檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋