English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2506090      線上人數 : 230
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63281


    題名: 以機器學習分析慢性腎病再入院因子的預測
    Prediction of readmission factors in chronic kidney disease using machine learning
    作者: 鄧君馨
    TENG, CHUN-HSIN
    貢獻者: 醫務管理學系碩士在職專班
    簡文山
    關鍵詞: 慢性腎病;機器學習;再住院
    chronic kidney disease;machine learning;readmission
    日期: 2023-06-20
    上傳時間: 2023-12-11 11:04:06 (UTC+8)
    摘要: 研究目的:本研究旨在利用機器學習技術,分析慢性腎病患者出院後30天內再次住院的危險因子,以期能幫助臨床醫生及早偵測具有高風險再住院的患者。
    研究方法:本研究為回溯性世代研究,蒐集來自臺北醫學大學三院臨床研究資料庫中,共計9,747位慢性腎病患者的數據,研究資?區間為2012年01月01日至2021年12月31日。使用變項包括人口學特徵、疾病因子及出入院狀況。並使用六種機器學習演算法包括羅吉斯回歸、支持向量機、決策樹、隨機森林、梯度提升機及人工神經網路。算法的性能透過比較六種模型的操作者曲線下面積(AUROC)來衡量。最終選擇擁有最佳表現的模型,進行再住院危險因子的排序與分析。
    研究結果:結果顯示,在比較六種機器學習模組在測試組的表現後,羅吉斯回歸模型擁有最佳分類能力,其AUROC為0.5810,準確性為0.6283、敏感度為0.4693、特異度為0.6620、精確率為0.2275、F1-score為0.3064。透過最佳模型進行變數重要性分析,結果指出高血脂、自體免疫疾病、痛風和糖尿病為慢性腎病再住院中最重要的危險因子。這也提醒了醫療單位在預防慢性腎病再住院時,應特別關注這些因素,以期減少再住院的機率,改善病患及家屬的生活品質,降低健保醫療的負擔。
    Objective: The aim of this study is to utilize machine learning techniques to analyze the risk factors for readmission within 30 days after discharge for patients with chronic kidney disease. The goal is to assist clinical physicians in early detection of patients at high risk of readmission.
    Methods: This study is a retrospective cohort study that collected data from the clinical research database of Taipei Medical University Hospital, encompassing a total of 9,747 patients with chronic kidney disease. The study period ranged from January 1, 2012, to December 31, 2021.
    The variables used include demographic characteristics, disease factors, and admission/discharge status. Six machine learning algorithms, including logistic regression, support vector machine, decision tree, random forest, gradient boosting machine, and artificial neural network, were utilized. The performance of these algorithms was evaluated by comparing the area under the receiver operating characteristic curve (AUROC) of each model. The model with the best performance was selected for ranking and analysis of readmission risk factors.
    Results: The results show that among the six machine learning models compared in the test set, the logistic regression model exhibited the best classification ability. It achieved an AUROC of 0.5810, an accuracy of 0.6283, a sensitivity of 0.4693, a specificity of 0.6620, a precision of 0.2275, and an F1-score of 0.3064. Through the analysis of variable importance using the best model, the results indicate that hyperlipidemia, autoimmune diseases, gout, and diabetes are the most important risk factors for readmission in chronic kidney disease. This also serves as a reminder for healthcare institutions to pay special attention to these factors in order to prevent readmissions for chronic kidney disease. The aim is to reduce the probability of readmission, improve the quality of life for patients and their families, and alleviate the burden on the healthcare system.
    描述: 碩士
    指導教授:簡文山
    委員:張偉斌
    委員:簡文山
    委員:魏慶國
    資料類型: thesis
    顯示於類別:[醫務管理學系暨研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML72檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋