摘要: | 背景: 過敏性鼻炎係因鼻黏膜接觸到環境中過敏原所誘發的發炎反應。日前雖有研究評估裝設有空氣過濾器的設備在過敏性鼻炎的功效,但這些研究的結果並不一致。
目的: 本研究主旨在進行系統性文獻回顧與統合分析,評估裝設有空氣過濾器的設備對過敏性鼻炎患者的有效性。
方法: 針對過敏性鼻炎患者使用空氣過濾器設備的隨機對照試驗進行文獻回顧與統合分析。搜尋 2023 年 6 月 1 日以前登記在 PubMed、Embase 和 Cochrane 資料庫的文獻。所有結果以固定效應模型及隨機效應模型進行運算。主要結果為症狀分數的變化;次要結果為使用藥物分數的變化、生活品質分數的變化以及尖端呼氣流量的變化。結果以標準化平均差和 95% 信賴區間的形式表示。
結果: 共收錄了八篇隨機對照試驗,其中三篇研究為平行設計試驗,五篇研究為交叉設計試驗。空氣過濾器設備組和對照組在比較症狀分數變化,使用晚上的症狀分數進行分析,標準化平均差為 ?0.21(95% 信賴區間:?0.35 ~ ?0.07,固定效應模型;?0.35 ~ ?0.08,隨機效應模型);使用白天的症狀分數進行分析,標準化平均差為 ?0.16(95% 信賴區間:?0.30 ~ ?0.03,固定效應模型及隨機效應模型);將報告晚上與白天症狀分數合併後進行分析,標準化平均差為 ?0.19(95%信賴區間:?0.32 ~ ?0.06,固定效應模型及隨機效應模型)。在藥物分數的變化,提取有需要再使用藥物的分數進行分析,標準化平均差為 ?0.08(95% 信賴區間:?0.34 ~ 0.18,固定效應模型;?0.55 ~ 0.39,隨機效應模型);提取長期使用藥物的分數進行分析,標準化平均差為 ?0.05(95% 信賴區間:?0.31 ~ 0.20,固定效應模型;?0.34 ~ 0.24,隨機效應模型)。在生活品質的變化,標準化平均差在固定效應模型為 ?0.12(95% CI:?0.35 ~ 0.11),在隨機效應模型為 ?0.06(95% 信賴區間:?0.81 ~ 0.68)。在尖端呼氣流量的變化,標準化平均差為 0.03(95% 信賴區間:?0.20 ~ 0.26,固定效應模型;?0.18 ~ 0.24,隨機效應模型)。
結論: 此篇研究的結果顯示裝設有空氣過濾器的設備可能有助於緩解與過敏性鼻炎相關的症狀,但它們可能無法改善藥物使用、生活品質或尖端呼氣流量。 Background: Allergic rhinitis is an inflammatory response induced by the nasal mucosa contacting allergens in the environment. Although there have been studies evaluating the effectiveness of air filter devices for allergic rhinitis, the results of these studies are inconsistent.
Objective: The main objective of this study is to conduct a systematic review and meta-analysis to evaluate the effectiveness of air filter devices for patients with allergic rhinitis.
Methods: We performed a systematic review and meta-analysis of randomized controlled trials of air filter devices for patients with allergic rhinitis. Literature registered in PubMed, Embase, and Cochrane databases before June 1, 2023, were searched. All results were calculated using fixed-effects model (FEM) and random-effects model (REM). The primary outcome was the change in symptom scores, and the secondary outcomes were changes in medication scores, quality of life (QoL) scores, and peak expiratory flow rate (PEFR). The results were presented as standardized mean differences (SMDs) and 95% confidence intervals (CIs).
Results: We included eight RCTs studies, three of which were parallel-design trials and five were crossover trials. In comparing the symptom score changes between the air filter devices group and the control group, using nighttime symptom scores for analysis, the SMD was ?0.21 (95% CI: ?0.35 ~ ?0.07, FEM; ?0.35 ~ ?0.08, REM); using daytime symptom scores for analysis, the SMD was ?0.16 (95% CI: ?0.30 ~ ?0.03, FEM and REM); pooling nighttime and daytime symptom score for analysis, the SMD was ?0.19 (95% CI: ?0.32 ~ ?0.06, FEM and REM). In analyzing medication score changes, one study was selected to extract scores for medication use when needed, with an SMD of ?0.08 (95% CI: ?0.34 ~ 0.18, FEM; ?0.55 ~ 0.39, REM); scores for regular medication use were also extracted for analysis, with an SMD of ?0.05 (95% CI: ?0.31 ~ 0.20, FEM; ?0.34 ~ 0.24, REM). In analyzing changes in QoL, the SMD was ?0.12 (95% CI: ?0.35 ~ 0.11) in FEM and ?0.06 (95% CI: ?0.81 ~ 0.68) in REM. In analyzing changes in PEFR, the SMD was 0.03 (95% CI: ?0.20 ~ 0.26, FEM; ?0.18 ~ 0.24, REM).
Conclusions: The results of this study suggest that air filter devices may help alleviate symptoms associated with allergic rhinitis, but they may not improve medication use, QoL, or PEFR. |