English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2537277      線上人數 : 224
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63190


    題名: Development and validation of CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer
    作者: HUAN, LE VIET
    貢獻者: 國際醫學研究博士學位學程
    黎阮國慶
    關鍵詞: 放射組學;非小細胞肺癌;多變量分析;Deepsurv;總生存期;深度放射組學;深度學習;CNN
    radiomics;non-small cell lung cancer;multivariate analysis;Deepsurv;overall survival;deep-radiomics;deep learning;CNN
    日期: 2023-07-11
    上傳時間: 2023-12-07 09:56:03 (UTC+8)
    摘要: ?管近年?肺癌治?取得了一些?展,但患者的五年生存率??15%。因此,??影像?已被用作??非小?胞肺癌(NSCLC)患者生存率的工具。本研究的目?是通??算机???描(CT?描)??放射?特征?名(??放射?和深度放射?),以??NSCLC患者的生存率。我??The Cancer Imaging Archive(TCIA)中已?布的??NSCLC?据集(NSCLC-Radiomics和NSCLC-Radiogenomics)?行了回?性分析。通?特征??和降?的??步?,??了放射?特征?名。

    在初始?段,我??估了??放射?的有效性。研究?果?示,利用??放射?特征?名的模型在??NSCLC患者的?体生存率方面表?出相?的?力。

    考?到?CT?描中存在一???放射???用于不同癌症?瘤生存??的可能性,我?一直在不?改?和利用?一集合的有效性,以??不同?型的?性?瘤生存率。本研究?涵?了??、??癌等癌症部位。我??2019年??和???瘤分割??(KiTS19)和The Cancer Imaging Archive中的??部???胞癌(HNSCC)?据集添加到我?的研究中。研究?果表明,???放射?特征?名和?床因素?合的?合模型,在各种?性?瘤的生存??背景下,比?依?于??放射?特征?名的模型具有更好的??能力。在Lung 1??集和Lung 2??集中,?合模型的iAUC分??0.621(95% CI: 0.588,0.654)和0.736(95% CI: 0.645,0.819)。??部和????集的?合模型的iAUC分??0.732(95% CI: 0.655,0.809)和0.834(95% CI: 0.722,0.946)。

    最后,本研究?旨在?建一种深度??方法,利用?床、深度放射?特征和??放射?特征???NSCLC患者的?体生存。我?采用三?(3D)卷?神?网?(CNN)存活深度神?网?架构提取深度放射?特征,并??非小?胞肺癌(NSCLC)患者的?体生存。?深度放射?特征与??放射?特征和?床??合并。模型的有效性使用一致性指?(C-index)?行?估。我?的研究得出??,通?深度????床、深度放射?和??放射?特征整合起?,能?准确??NSCLC患者的?体生存。?合模型(使用?床、深度放射?和??放射?等3???)?用Deepsurv方法在与其他模型比????了最高的效率(Lung 1??集C-index?0.733,Lung 2??集C-index?0.751)
    In spite of advancements made in lung cancer treatment in recent times, the survival rate for patients at the 5-year mark remains a mere 15%. Therefore, medical imaging has been used as a tool for predicting survival rates in patients with non-small cell lung cancer (NSCLC). The objective of this study was to develop radiomics feature signatures (traditional-radiomics and deep-radiomics) from computed tomography (CT) scans to predict survival rates in NSCLC patients. We conducted a retrospective analysis of two datasets of NSCLC (NSCLC-Radiomics and NSCLC-Radiogenomics) that were published in The Cancer Imaging Archive (TCIA). The radiomics signatures are found by the statistical steps of features selection, reducing the features dimension.
    In the initial phase, the effectiveness of traditional-radiomics was assessed. The findings revealed that models utilizing traditional-radiomics signatures demonstrated considerable promise in predicting the overall survival of individuals with NSCLC.
    By considering the possibility of existing a set of traditional-radiomics markers from CT scans for diverse cancer tumors survival prediction, there has been ongoing progress in enhancing and utilizing the effectiveness of this set in forecasting survival rates for different types of malignancies. This research encompassed cancer sites such as the kidney, as well as head and neck cancer. Two data sets (the 2019 Kidney and Kidney Tumor Segmentation Competition (KiTS19) and Head and neck cancer squamous cell carcinoma (HNSCC) in the TCIA archive) were added to our study. The findings indicated that a combined model incorporating both traditional-radiomics and clinical factors demonstrated superior predictive capability compared to relying solely on traditional-radiomics in the context of survival prediction in various malignancies. The Integrated area under curve (iAUC) of the combined model in Lung 1 training set, Lung 2 testing set is 0.621 (95% CI: 0.588,0.654) and 0.736 (95% CI: 0.645,0.819), respectively. Head & neck (H&N) and Kidney validation set obtained combined model’s iAUC is 0.732 (95% CI: 0.655,0.809) and 0.834 (95% CI: 0.722,0.946), respectively.
    Lastly, the study also aimed to create a deep learning approach that uses clinical, deep-radiomics features, and traditional-radiomics features to predict overall survival in NSCLC patients. We utilized a 3-dimensional (3D) convolutional neural network (CNN) survival deep neural network architecture to extract deep-radiomics features and predict the overall survival of patients with NSCLC. The deep-radiomics features were merged with traditional-radiomics signatures and clinical parameters. The model's effectiveness was evaluated using the concordance index (C-index). Our study concluded that integrating clinical, deep-radiomics, and traditional-radiomics features through deep learning enabled accurate prediction of overall survival in NSCLC patients. Combined model (using 3 parameters including clinical, deep-radiomics and traditional-radiomics) applied Deepsurv method achieve the highest efficiency when compared with other models (C index is 0.733 in Lung 1 training set, C index is 0.751 in Lung 2 testing set).
    描述: 博士
    指導教授:黎阮國慶
    委員:蘇家玉
    委員:羅崇銘
    委員:杜書儒
    委員:陳榮邦
    委員:黎阮國慶
    資料類型: thesis
    顯示於類別:[國際醫學研究碩博士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML62檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋