English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2560362      線上人數 : 172
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/63159


    題名: 以深度學習訓練辨識台灣常見升糖指數食物
    Using deep learning neural network to predict glycemic index of commonly consumed Taiwanese food image
    作者: 高靖雯
    KAO, JING-WEN
    貢獻者: 保健營養學系碩士班
    張榮素
    關鍵詞: 升糖指數;糖尿病;深度學習;食物影像辨識;食物影像資料庫
    Diabetes;Glycemic index;Deep learning;Food image database;Food recognition
    日期: 2023-07-17
    上傳時間: 2023-12-07 09:50:21 (UTC+8)
    摘要: 背景:糖尿病是一種與飲食相關的慢性疾病,碳水化合物的攝取量與種類選擇,在調控血糖上扮演著一個很重要的角色。其中,升糖指數(GI)是根據食物對於血糖的影響,進而將食物分成高、中、低三類的一種概念。此外,人工智慧(AI)用於辨識影像的方法也逐漸成熟,對於應用在飲食評估上潛在著前瞻性與可行性。目前臺灣尚未建置臺灣常見食物影像資料庫,且無應用AI在糖尿病營養照護的研究。
    目的:本研究目的主要是訓練AI辨識台灣常見的升糖指數食物影像,並以糖尿病病人所拍攝紀錄的食物影像日誌來驗證AI辨識升糖指數食物的準確度。
    方法:在AI食物影像辨識訓練中,我們首先建立了一個包含150種台灣常見GI食物的食物影像暨營養資料庫,初步挑選三種深度學習模型 (ResNeXt-101-32x8、ViT_B_16 和ResNet152)來測試AI辨識食物影像的準確度,最後,以糖尿病受試者所拍攝的日常飲食影像來驗證模型的準確度。食物影像來源主要分成三種,網路爬蟲、由本實驗室拍攝的標準食物影像以及臨床糖尿病人食物影像,影像資料集分成訓練集:驗證集:測試集=8:1:1,訓練條件Batch size設為32。 初步招募21位患有糖尿病的台灣成人,使用本實驗室開發的 「Formosa FoodApp」讓受試者拍照記錄日常飲食攝取狀態,營養師再利用「圖像飲食評估分析法」分析病患所攝取的食物熱量及其GI和升糖負荷值(GL值),共計收集271天食物影像日誌,3003張食物影像。
    結果:150種台灣常見GI食物影像資料庫收集37,301張食物影像,95%來自網路爬蟲(35,521張食物影像),2%來自本實驗室拍攝的食物標準照(759張食物影像),3%來自臨床糖尿病病人的飲食日誌(1,121張食物影像)。在AI模型預訓練階段, ResNeXt-101-32x8、ViT_B_16 和ResNet152三種模型平均的整體top-1準確度達到約85.9%,整體 top-5準確度皆超過96%。 對於不同GI食物的辨識上,高、中、低GI食物的整體top-1辨識準確度分別是85.8%、81.7% 和87.9%,雖然整體辨識率高達8成,但有7種食物的平均辨識準確度低於6成。第二階段為臨床驗證,共有78種糖尿病人所攝取的食物影像進行驗證,整體top-1準確度達到80.8%,其中以高GI食物類別的辨識準確度87.4%為最高,其次為低GI食物的76.9%和中GI 60.2%。 ResNeXt-101、ViT_B_16和ResNet152 分別有9、12、8 種食物辨識準確度為0%,後續分析顯示:三種深度學習模型辨識不佳的主因為「人類也難以辨識(人類的準確度低於60%)」、「預訓練的辨識準確率就較低(模型準確度低於60%)」或是「食物種類間相似度高」等因素。
    結論:在這項初步研究中,AI深度模型對於辨識臨床糖尿病受試者的食物影像的體準確度達80.8%,其中辨識高GI食物的準確度為最佳。未來目標是持續收集病患飲食資料,並以臨床影像微調AI模型以增進臨床食物影像辨識準確度,並進行食物影像切割,分析個別食物的營養素並計算GL值。
    Background: Carbohydrate (CHO) restriction is crucial in managing diabetes. The glycemic index (GI) and glycemic load (GL) are used to assess the effects of CHO on raising blood glucose levels.
    Aim: The purpose of this study was to train artificial intelligence (AI) to recognize commonly consumed GI foods in Taiwan, and to validate the pre-trained AI models using GI food images captured by diabetic patients.
    Methods: We first build up a GI food image database which contains 150 commonly consumed Taiwanese CHO foods, and pre-trained three deep learning models (ResNeXt-101-32x8, ViT_B_16 and ResNet152) using the established GI image database. The GI food images database was obtained from three sources: publicly available food images downloaded using web-crawler, standardized food images filmed in the laboratory (Lab), and real-life food images captured by diabetic patients. For the clinical validation, 78 food items of real-life food images (n=3,003 images) was recorded using “Formosa FoodApp” by 21 diabetic patients over 271 days. An image-based dietary assessment was carried out by trained nutritionist to estimate the portion size, GI, GL and nutrient intake of patients. Accuracy was presented as percentage (%) of top-1 or top-5 accuracy: top-1 accuracy as the number of model answer correctly divided by total number of predictions, and top-5 accuracy as the number of top 5 highest probability answers that match the correct answer divided by the total number of predictions.
    Result: The Taiwanese GI food image database consisted of 150 food items with a total of 37,301 images, of which 95% was derived from web-crawler (n= 35,521 images), 2% was from standardized studio images (n= 759 images), and 3% was real-life food images derived from dietary record of diabetic patients (n= 1,121 images). In the training stage, all three AI models (ResNeXt-101-32x8, ViT_B_16 and ResNet152) achieved >84% top-1 accuracy, and >96% top-5 accuracy. The average top-1 training accuracy for high GI, medium GI and low GI foods were 85.8%, 81.7% and 87.9%, respectively. For the clinical validation, the overall top-1 accuracy was 80.8% for recognizing 78 food items of real-life food images of diabetic patients. The highest top-1 accuracy was the prediction of high GI foods (87.4%), following low GI foods (76.9%) and medium GI (60.2%). However, ResNeXt-101, ViT_B_16, and ResNet152 had 9, 12, and 8 food items with 0% top-1 accuracy, respectively.
    Conclusion: In this pilot study, we found that deep learning achieved 80.8% in recognizing the real-life food images of diabetic patients, with high GI foods yield the highest accuracy. The next goal is to fine-tuning deep leaning models based on real-life food images collected from diabetic patients.
    描述: 碩士
    指導教授:張榮素
    委員:朱威達
    委員:蘇家玉
    委員:張榮素
    資料類型: thesis
    顯示於類別:[保健營養學系暨研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML63檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋