Taipei Medical University Institutional Repository:Item 987654321/63081
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 45022/58199 (77%)
Visitors : 2061843      Online Users : 147
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://libir.tmu.edu.tw/handle/987654321/63081


    Title: 脂肪酸對運動誘導肌肉損傷之影響
    The effects of fatty acids on exercise-induced muscle injury
    Authors: 闕聖明
    CHUEH, SHENG-MING
    Contributors: 代謝與肥胖科學研究所碩士班
    夏詩閔
    Keywords: 骨骼肌;脂肪酸;運動誘導的肌肉損傷;體外模型
    Skeletal muscle;Fatty acids;Exercise-induced muscle damage (EIMD);in vitro model
    Date: 2023-07-13
    Issue Date: 2023-12-07 09:35:44 (UTC+8)
    Abstract:  在日常生活中骨骼肌容易受到運動產生的機械力傷害而影響日常活動。因此,了解運動損傷後的肌肉修復機制極為重要。在先前的一項研究中,我們以生酮飲食作為飲食誘導肥胖小鼠的減重方式,發現生酮飲食顯著改善肥胖小鼠的耐力運動表現,並上調了參與脂質代謝的蛋白質表現。因此,我們假設脂肪酸可以減輕肌肉組織損傷並有助於肌肉修復。
      本研究的主要目的是探討脂肪酸對肌肉修復的保護機制。最初,我們使用咖啡因和AMPK激活劑5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) 在C2C12成肌細胞分化的肌管中建立體外運動誘導的肌肉損傷 (EIMD) 模型。通過測量乳酸脫氫?滲漏 (LDH leakage) 確認肌肉損傷程度,結果表明咖啡因合適作為EIMD的體外模型。接下來,我們使用定量蛋白質組學分析瞭解咖啡因的影響,結果發現參與脂肪酸代謝的蛋白質以劑量依賴性方式增加,這表明補充脂肪酸可能減緩肌肉細胞受咖啡因影響所造成的損傷。為確認脂肪酸是否對EIMD具保護作用,我們比較不同脂肪酸,結果證實MCFA可預防咖啡因引起的肌肉損傷。為全面了解MCFA對咖啡因誘導EIMD的影響,我們在咖啡因介入下進行了定量蛋白質組學分析,並探討MCFA對低劑量 (0.5 mM) 和高劑量 (5 mM) 咖啡因介入的影響。在低劑量咖啡因組,兩種MCFA都會激活脂質儲存、穀胱甘?結合反應、TCA 循環和呼吸電子傳遞,然而在高劑量咖啡因組中介入MCFA的細胞仍增加了細胞凋亡相關蛋白表現。結果表明,MCFA可以在輕度損傷條件下從EIMD中拯救肌肉細胞,但無法防止嚴重損傷。此外,在低劑量咖啡因組中MCFA的介入增加了GST和SOD蛋白表現,這表明MCFA可能會誘導氧化壓力反應以緩解咖啡因造成的壓力,從而拯救肌肉細胞免受損傷。這些發現表明,MCFA通過線粒體促進能量代謝並緩解氧化壓力,從而有助於其對EIMD的保護作用。這項研究提供了一個體外平台,用於測試預防EIMD的介入方式、對鈣積累引起的肌肉損傷的分子見解,以及MCFA對EIMD的影響。
    Skeletal muscle is prone to damage in daily life, particularly due to mechanical stress from exercise, which can impact daily activities. Therefore, understanding the mechanisms underlying muscle repair after exercise-induced damage is crucial. In a previous study, we observed that a ketogenic diet intervention, used for weight loss, significantly improved endurance exercise performance in diet-induced obese mice and upregulated proteins involved in lipid metabolism. Thus, we hypothesized that fatty acids may attenuate muscle tissue damage and aid in repair.
    The main objective of this study was to investigate the protective mechanisms of fatty acids on muscle repair. Initially, we established in vitro exercise-induced muscle damage (EIMD) models in differentiated myotubes from C2C12 using caffeine and the AMPK activator 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR). The extent of muscle damage was confirmed by measuring LDH leakage, and the results indicated that caffeine was a suitable model for EIMD. Next, we examined the effects of caffeine using quantitative proteomics analysis and found that proteins involved in fatty acid metabolism increased in a dose-dependent manner, suggesting that fatty acid intervention might rescue muscle cells from caffeine-induced damage. To determine if fatty acids exert protective effects against EIMD, we compared different fatty acids, and then confirmed that co-treatment with MCFAs prevented caffeine-induced muscle damage. To comprehensively understand the effects of MCFAs on caffeine-induced EIMD, we performed quantitative proteomics analysis under two doses of caffeine treatment. We examined the effects of MCFAs on low-dose (0.5 mM) and high-dose (5 mM) caffeine treatments. Under low-dose caffeine treatment, both MCFAs activated lipid storage, glutathione conjugation, the TCA cycle, and respiratory electron transport. However, under high-dose caffeine treatment, MCFAs elevated the signaling of apoptosis. The results suggested that MCFAs can rescue muscle cells from EIMD under mild damage conditions but fail to protect against severe injury. MCFAs increased the protein expression of GST and SODs under low-dose caffeine treatment, suggesting MCFAs might trigger oxidative stress response to relieve the caffeine-caused stress thus rescue muscle cells from injury. These findings suggest that MCFAs promote energy metabolism through mitochondria-dependent processes and relieve oxidative stress, contributing to their protective effects on EIMD. This work provides an in vitro platform for testing interventions to prevent EIMD, molecular insights into calcium accumulation-induced muscle injury, and a systematic understanding of the effects of MCFAs on EIMD.
    Description: 碩士
    指導教授:夏詩閔
    委員:黃翠琴
    委員:張心儀
    委員:夏詩閔
    Data Type: thesis
    Appears in Collections:[Graduate Institute of Metabolism and Obesity Sciences] Dissertations/Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML114View/Open


    All items in TMUIR are protected by copyright, with all rights reserved.


    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback