English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2531269      線上人數 : 228
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/62895


    題名: 應用具關鍵資訊提取能力之預訓練語言模型於出院後死亡風險預測
    Predicting Mortality Risk after Hospital Discharge using a Pre-Trained Language Model with Key Information Extraction Module
    作者: 林志成
    Lin, CHIH-CHENG
    貢獻者: 大數據科技及管理研究所碩士班
    張詠淳
    關鍵詞: 基於變換器的雙向編碼器;關鍵臨床描述提取器;出院病摘;死亡風險;跨院驗證
    Bidirectional Encoder Representations from Transformers;Crucial Clinical Description Extractor;Discharge summary;Mortality Risk;Cross-hospital verification
    日期: 2023-06-20
    上傳時間: 2023-09-21 14:27:39 (UTC+8)
    摘要: 隨著電子健康紀錄(EHR)的快速發展和機器學習技術的成熟,使得海量數據的處理成為可能。然而大約80%的醫療數據在建立後仍然是非結構化格式,是高度未開發的資源,這些信息可能會被 EHR 的結構化資訊所遺漏。近幾年來,自然語言處理分類技術於醫學臨床的貢獻非常大,他可以快速的幫助醫生自動分類、更好地管理和理解醫療數據,進而協助醫生做最佳的疾病診斷和治療。
    本研究使用MIMIC-III資料集之出院病摘臨床文本紀錄,採用基於變換器的雙向編碼器 (Bidirectional Encoder Representations from Transformers, BERT)預訓練語言模型,進行病患出院後之死亡風險預測。考量BERT基本模型長文本探索的效能不佳問題,本研究提出“關鍵臨床描述提取器 (Crucial Clinical Description Extractor, CCDE)”,將龐大的臨床文本提取摘要(平均1,800字濃縮摘要至510字以內),讓模型能完整學習到臨床文本的重要資訊。實驗證明,我們的模型不僅能大幅提升死亡案例的預測效能,同時也能保持原有存活案例的預測能力。
    另外,本研究亦嘗試跨院驗證實驗,將MIMIC-III實驗模型參數,應用於TMUCRD資料集的預測。實驗結果,我們的模型確實能有效應用於不同醫院臨床資料。其中,我們也細究原因兩個資料集科別差異性,並解釋效能差異原因。
    With the rapid development of electronic health records (EHR) and the maturity of machine learning technology, it is possible to process massive data. However, approximately 80% of medical data remains in an unstructured format after creation, a highly untapped resource that can be missed by EHR's structured information. In recent years, natural language processing classification technology has made great contributions to clinical medicine. It can quickly help doctors to automatically classify, better manage and understand medical data, and then assist doctors to make the best disease diagnosis and treatment.
    This study uses the clinical text records of discharged patients from the MIMIC-III data set, and uses the Transformer-based bidirectional encoder (Bidirectional Encoder Representations from Transformers, BERT) pre-trained language model to predict the death risk of patients after discharge. Considering the poor efficiency of long-text exploration of the BERT basic model, this study proposes the "Crucial Clinical Description Extractor (CCDE)", which extracts and summarizes huge clinical texts (an average of 1,800 words and condenses the abstract to less than 510 words) , so that the model can fully learn the important information of the clinical text. Experiments have proved that our model can not only greatly improve the prediction performance of death cases, but also maintain the prediction ability of the original survival cases.
    In addition, this study also attempted a cross-institution verification experiment, applying the parameters of the MIMIC-III experimental model to the prediction of the TMUCRD data set. Experimental results show that our model can indeed be effectively applied to clinical data from different hospitals. Among them, we also examine the reasons for the differences between the two datasets, and explain the reasons for the performance differences.
    描述: 碩士
    指導教授:張詠淳
    委員:張詠淳
    委員:陳建錦
    委員:蘇家玉
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML79檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋