English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2531269      線上人數 : 228
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/62892


    題名: 以多目標深度學習建構台灣體適能資料中身心健康預測模型之研究
    A study of Constructing a Multi-Objective Deep Learning Model for Predicting Physical and Mental Health in Taiwanese
    作者: 黃士軒
    HUANG, SHIH-HSUAN
    貢獻者: 大數據科技及管理研究所碩士班
    張詠淳
    關鍵詞: 多目標學習;深度學習;機器學習;體適能資料;身理健康;快樂程度;睡眠困難;神經網路
    Multi-Objective;Deep Learning;Machine Learning;Physical Fitness;Health Status;Happiness;Sleep Status;Deep Neural Network;Contextual Long Short-Term Memory
    日期: 2023-06-20
    上傳時間: 2023-09-21 14:27:32 (UTC+8)
    摘要: 隨著國人對自我健康意識抬頭,越來越多人開始重視自我健康與生活狀況,為了滿足人們對自我狀況的了解,在不必耗費大量的時間等待醫療檢測或是浪費醫療資源的情況下,以非醫學性、非檢驗性報告等結構化資料,進行實驗與研究,從模型預測中掌握自身的狀況,則顯得特別有意義。
    本研究運用輔仁大學所收集的全國體適能資料等結構化資料進行實驗,本研究的體適能資料可以分為七大部分的資料類型,這幫助我們從不同的面相與角度切入問題,針對自我現況進行審核,我們透過多目標深度學習方法,使用CLSTM模型,對睡眠品質、自我健康狀況、自我快樂程度進行預測,經由實驗證實,相較於一般的模型,本實驗所設計的(MUSCLE : multi-task learning CLSTM model)模型,在預測表現上則顯得更為出色,這幫助我們更準確的分析出個人身心狀況,本研究的目的,在於提早發現可能存在的身心健康或是睡眠困難等因素,而後規劃出相對應的解決方案與方法,從中改善可能造成其影響的變因,以幫助受測者的身心、生活更加健康,進而提升國人健康水準,強化國人對自我健康的意識與認識,造就更加健康與快樂的生活。
    With the rising awareness of self-health in Taiwan, more and more people are beginning to value their own well-being and lifestyle. In order to meet people's need, people understand their own conditions without having to spend a significant amount of time waiting for medical tests or wasting on healthcare resources, researching with structured data such as non-medical, non-diagnostic reports has become particularly meaningful and useful in Taiwan.
    This study utilized structured data, including nationwide fitness data collected by Fu Jen Catholic University, for experimentation. The fitness data in this study can be divided into seven major categories, allowing us to approach the problem from different perspectives, and conduct self-evaluations based on individual circumstances. We use multi-objective deep learning methods, and employed the CLSTM model to predict sleep quality, health status, and personal happiness. Experimental results have demonstrated that our designed MUSCLE model outperforms machine learning models in terms of prediction performance. This method helps us to analyze personal physical and mental conditions more accurately.
    The purpose of this research is to detect potential factors related to physical and mental health or sleep quality at the early stage. We plan appropriate solutions to improve the identified influential factors, helping individuals achieve better physical and mental health.
    Ultimately, this contributes to enhancing the overall health level of the Taiwan population and strengthening their awareness of self-health.
    描述: 碩士
    指導教授:張詠淳
    委員:張詠淳
    委員:何健章
    委員:蘇家玉
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML59檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋