English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 44607/57715 (77%)
造訪人次 : 1621542      線上人數 : 146
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/62465


    題名: 利用深度學習對電腦斷層影像上不同良性和惡性的腎臟腫瘤進行辨識
    Automated differentiation of benign and malignant renal tumors on computed tomography using deep learning
    作者: 甘弘成
    Kan, Hung-Cheng
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    彭徐鈞
    關鍵詞: 深度學習;電腦斷層;腎臟腫瘤;人工智慧;機器學習
    deep learning;computed tomography;renal tumor;artificial intelligence;machine learning
    日期: 2022-07-11
    上傳時間: 2023-01-17 14:53:03 (UTC+8)
    摘要: 腎臟腫瘤在雖不在台灣十大常見癌症之列,但如同歐美國家一樣,近30年來發生率有逐年上升的趨勢。電腦斷層(computed tomography, CT)影像在臨床上是第一線評估腎臟腫瘤的方法之一。如何區分良性和惡性腫瘤在臨床上是很重要的,如此一來可以避免不必要的手術和檢查。然而,目前並沒有很好的方法從電腦斷層影像上區分腎臟的良性和惡性腫瘤。腎臟腫瘤切片也許對於區分良性和惡性腫瘤有幫助,但也伴隨著可能的併發症,譬如腫瘤擴散、出血、?管、假性血管瘤、感染與氣胸等等。如果我們可以從電腦斷層影像上區分良性和惡性腫瘤,這些情況將可以避免。

    近年來深度學習被廣泛應用在醫療影像分析上,訓練良好的深度學習模型可以精準的擷取影像特徵進而對影像辨識。因此,我們手動截取電腦斷層上的腎臟腫瘤,以遷移式學習進行訓練,希望可以達到區分腎臟腫瘤類別的效果。

    我們收集腎臟腫瘤病人554人,包括67位angiomyolipoma (AML)、34位oncocytoma、246位clear cell renal cell carcinoma (ccRCC)、124位chromophobe renal cell carcinoma (chRCC)以及83位papillary renal cell carcinoma (pRCC),共4238張電腦斷層影像。將資料較少組別做適當資料增量後,分別使用Inception V3和Resnet 50預訓練模型作分析。Inception V3表現最好的正確率為0.830,Resnet 50最好的正確率為0.849,可見使用深度學習應用在腎臟腫瘤的電腦斷層影像辨識上可以達到不錯的結果。
    Renal cell carcinoma (RCC) is the ninth most common cancer in Taiwan, and its’ incidence has been increasing over the past three decades, as well as in Europe and USA. Computed tomography (CT) is one of the first-line imaging method used to evaluate renal masses in clinical practice. Distinguishing these benign renal tumors from malignant renal tumors is clinically important to avoid unnecessary surgical intervention or examination. However, there are no consistently reliable pathognomonic CT scan features that can confidently differentiate benign renal tumors from malignant renal tumors. Renal tumor biopsy (RTB) may be helpful for distinguish benign renal tumors from malignant renal tumors. However, complications associated with RTB include tumor cell seeding along the tract, bleeding, fistula, pseudoaneurysm, infection, and pneumothorax (REF). If confident diagnosis of renal lesions with low or no malignant potential can be achieved from CT images, unnecessary surgeries and diagnostic intervention could be avoided.

    Recently, deep learning (DL) methods have been applied to various medical imaging applications. These pretrained Convolutional Neural Networks (CNN) models provide high-quality image features which have been verified in various image classification tasks. In experiments, we compared the performances of the features extracted from hand-crafted features (HCF) to find out which CNN model is suitable for our task

    554 patients were enrolled in this study, including 67 patients with angiomyolipoma, 34 patients with oncocytoma, 246 patients with clear cell renal cell carcinoma, 124 patients with chromophobe renal cell carcinoma and 83 patients with papillary renal cell carcinoma, total 4238 computed tomography images. After data augmentation, we used inception V3 and Resnet50 as CNN model for 5-fold training-validation and test. The best accuracy of Inception V3 is 0.8302, and Resnet 50 is 0.8491. Using deep learning to predict renal tumor subtypes could achieve good accuracy
    描述: 碩士
    指導教授:彭徐鈞
    委員:劉文德
    委員:林柏宏
    委員:康峻宏
    委員:彭徐鈞
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML405檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋