Taipei Medical University Institutional Repository:Item 987654321/61841
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 45422/58598 (78%)
造访人次 : 2544144      在线人数 : 186
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61841


    题名: 使用多組學數據透過深度學習模型和相似性網路融合的方法進行前列腺癌復發的生物標記物辨識
    Use Of Multiomics Data With A Deep Learning Model To Identify Prostate Cancer Recurrent-Related Biomarkers
    作者: 王子豪
    WANG, TZU-HAO
    贡献者: 醫學資訊研究所碩士班
    張資昊
    关键词: 深度學習
    Multiomics Data
    日期: 2022-01-11
    上传时间: 2022-08-12 11:20:43 (UTC+8)
    摘要: 本研究主要是辨識前列腺癌患者預後復發的相關潛在多組學生物標記物。利用深度學習演算法中的自編碼器(autoencoder)模型和相似性網路融合 (similarity network fusion),我們分析了來自癌症基因體圖譜計畫(The Cancer Genome Portal) 中的 494 名前列腺癌患者,其中有60名復發患者。接著,我們交叉比對兩個模型所識別出的生物標記物,進一步整合建構出多組學的檢測組套。最後,我們總共收集了六個交叉的多組學生物標誌物:TELO2、ZMYND19、miR-143、miR-378a、cg00687383 (MED4) 和 cg02318866 (JMJD6; METTL23)。根據多組學的檢測組套,我們將患者分為高復發和低復發風險組,兩者所繪出的Kaplan-Meier曲線之間的差異達到p值 = 5.33 × 10−9,優於之前的研究(p值 = 5 × 10−7)。此外,將被選中的多組學生物標誌物搭配上醫學臨床資訊:Gleason Score、年齡和癌症分期,我們建構了一組高表現的預測模型,其C-index = 0.713、p-value = 2.97 × 10−15、AUC = 0.789。由此可知,被選中的多組學生物標記物所生成的風險評分 (Risk Score),可作為預測攝護腺癌復發的有效指標。這項研究有助於我們了解攝護腺癌復發的病因和機轉路徑,並且,在攝護腺移除手術治療後,這些具有預測復發風險的潛在生物標記物,能對於患者和醫生在術後的共同臨床決策上給予幫助。
    This study is to identify potential multiomics biomarkers for the early detection of the prognostic recurrence of Prostate cancer patients. A total of 494 prostate adenocarcinoma (PRAD) patients (60-recurrent included) from the Cancer Genome Atlas (TCGA) portal were analyzed using the autoencoder model and similarity network fusion. Then, multiomics panels were constructed according to the intersected omics biomarkers identified from the two models. Six intersected omics biomarkers, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6; METTL23), were collected for multiomics panel construction. The difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panel achieved p-value = 5.33 × 10−9, which is better than the former study (p-value = 5 × 10−7). Additionally, when evaluating the selected multiomics biomarkers with clinical information (Gleason score, age, and cancer stage), a high-performance prediction model was generated with C-index = 0.713, p-value = 2.97 × 10−15, and AUC = 0.789. As a result, the risk score generated from the selected multiomics biomarkers worked as an effective indicator for the prediction of PRAD recurrence. This study helps us to understand the etiology and pathways of PRAD and further benefits both patients and physicians with potential prognostic biomarkers when making clinical decisions after surgical treatment.
    描述: 碩士
    指導教授:張資昊
    委員:吳立青
    委員:蘇家玉
    委員:張資昊
    数据类型: thesis
    显示于类别:[醫學科學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML183检视/开启


    在TMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈