Taipei Medical University Institutional Repository:Item 987654321/6183
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 45073/58249 (77%)
造访人次 : 2379962      在线人数 : 165
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/6183


    题名: 以獨立元件分析方式評估巴金森病之腦血流異常
    Assessing rCBF Changes in Parkinson’s Disease Using Independent Component Analysis on SPECT Image
    作者: 徐榮隆
    Jung Lung Hsu
    贡献者: 醫學資訊研究所
    关键词: 醫學影像
    獨立元件分析
    巴金森氏病
    單光子電腦斷層攝影
    Medical Image
    Independent Component Analysis
    ICA
    Parkinson’s disease
    Cognition
    SPECT
    日期: 2005
    上传时间: 2009-09-11 16:23:30 (UTC+8)
    摘要: 論文摘要
    論文名稱: 以獨立元件分析方式評估巴金森病之腦血流異常
    台北醫學大學醫學資訊研究所
    研究生姓名:徐榮隆
    畢業時間:九十五學年度 第二學期
    指導教授:徐建業 台北醫學大學醫學資訊研究所 副教授
    協同指導教授:邱泓文 台北醫學大學醫學資訊研究所 副教授

    內文
    關鍵詞:醫學影像,獨立元件分析,巴金森氏病,單光子電腦斷層攝影
    背景: 過去二十年,生物醫學及工程上最重要的進展之一就是在非侵式記錄技術的突飛猛進。嶄新的技術讓我們能設計、從事各種複雜的實驗,記錄高精密度的腦電波、心電圖、肌電圖、磁振造影及功能性磁振造影。但是,當生醫技術繼續向時空精密度極限挑戰的同時,生醫訊號分析方法的進展卻沒能趕上技術開發的腳步。對腦神經科學而言,一個可信度高的分析方法與一項革命性的生物技術同等重要,我們需更好的分析方法來從龐大複雜的數據 (包括時間)中,擷取有意義的資訊。本研究使用一個目前最受訊號處理領域矚目的『獨立元件分析』 (Independent Component Analysis, ICA)演算法為主,來分析單光子電腦斷層攝影影像訊號。獨立元件分析是一種可以將多管道 (concurrent multiple-channel)生醫訊號分解成完全獨立的訊號(independent component),並進一步探討這些獨立訊號與實驗行為(task behavior and performance)的相關性的分析工具。這個分析方法在過去幾年已經應用到各種基礎腦神經科學的數據分析,包括腦電波(EEG)、肌電圖(EMG),及功能性磁振造影,獨立元件分析的提出原是為了要解決「雞尾酒會問題」(cocktail-party problem),或稱為「分離未知訊號源問題」(blind source separation)。ICA 是一個可以將被一個未知轉換 (matrix)線性混在一起的訊號,一個個分離出來的工具。其大致之原理是利用神經網路演算法去找到另外一個轉換(W matrix),使其所有輸出 (Y) 的焗 (joint entropy)到達它的最大值,此W就可以把原來的訊號還原回來。過去ICA 應用到分析fMRI 訊號如McKeown et al展示了如何用ICA去分析fMRI 的資料。ICA 的最大優點是它不需要事先知道腦部會對各種不同的事件做如何的反應,而能自動的找到不同區域所作的活動,不像其它的分析方法往往依賴一個事先可以預測的活動變化來尋找哪些區域會產生這變化。本研究將運用此分析方式(獨立元件分析)來比較正常人與巴金森氏病人其大腦中的局部腦血流差異。
    方法:巴金森氏病是老年常見的神經退化性疾病,其主要的症狀為動作遲緩、僵直、姿態不穩與顫抖。雖然經過數十年的研究,對於巴金森氏病的腦血流變化仍然未有定論,而目前的單光子電腦斷層攝影對於評估局部的腦血流與了解疾病的病理生理學是一項有用的工具。在本研究中我?將運用ICA 分析一組正常人與巴金森氏病人的單光子電腦斷層攝影影像資料,來比較正常人與巴金森氏病人其大腦中的局部腦血流差異的位置,並探討此差異與臨床症狀的關係。我們收集了27位不同程度的巴金森氏病人與24位對照組的單光子電腦斷層攝影影像資料,病患的臨床症狀與疾病嚴重度依英國巴金森氏病評估量表(United Kingdom of Parkinson’s Disease Rating Scale)與荷雅氏分級(Hoehn and Yahr)。以ICA 分析出9個與疾病相關的獨立訊號和42個與疾病不相關的獨立訊號,再經由影像統計分析的方法(Statistic Parametric Mapping, SPM)找出巴金森氏病與正常人有統計顯著差異的區域,同時我們也以病患的臨床症狀指標找出與疾病有顯著關聯的相關腦功能區。
    結果:我們的研究顯示運用此方法可以找到比傳統分析方式更多的疾病相關聯腦功能區,且這些有顯著意義的區域與臨床症狀有著顯著相關,並且與疾病的病理生理學相符合。同時我們也發現邊緣系統(limbic system)中的扣帶迴(cingulated gyrus)與腦島(insula)和臨床症狀有顯著相關,這在過去的文獻並未被提出。
    討論: 由於傳統的分析方式是以選擇區域性(region of interest)來進行比較,我們的研究顯示應用獨立成份分析方式可提供一個不同且較完全的方式來評估巴金森氏病的腦血流變化區域。然而我們的病人數並不是很多,另外病人服用藥物可能產生的影響是本研究在解釋時須注意的。未來將須更充份評估此方法的優劣並做廣泛的測試以期於臨床上的使用。
    Abstract
    Title of Thesis: Assessing rCBF Changes in Parkinson’s Disease Using Independent Component Analysis on SPECT Image
    Author: Jung Lung Hsu
    Thesis advised by : Chien-Yeh Hsu
    Taipei Medical University,
    Graduate Institute of Medical Informatics
    Key words: Medical Image, Independent Component Analysis, ICA, Parkinson’s disease, Cognition, SPECT
    Background: The emergence of non-invasive recording during the current decade is one of the most important developments in biomedical sciences. As technologies continue to push the boundaries of spatial-temporal resolutions of bio-signal recordings, analytic tools need to keep pace with these advances. However, analytic tools for exploring and modeling the wealth of data collected during functional imaging experiments do not yet capture or model the rapidly shifting dynamics of brain systems during complex cognitive activity. Methods are needed to analyze this wealth of data and to separate out machine noise and physiological artifacts to examine functionally independent physiological systems. Based on a recently developed signal-processing tool, Independent Component Analysis, we can implement methods for linear separation of activity originating in functionally distinct physiological systems by using the relative temporal independence of these activities across sufficient recording time and experimental conditions. This approach has resulted in very promising results in analyzing electroencephalogram (EEG), electrocardiogram (EKG), electromyography (EMG), or functional magnetic resonance imaging (fMRI) data. Materials and Methods: Despite extensive studies in Parkinson’s disease (PD) in recent decades, the neural mechanisms of this common neurodegenerative disease remain incompletely understood. Functional brain imaging technique such as single photon emission computerized tomography has emerged as a tool to help us understand the disease pathophysiology by assessing regional cerebral blood flow (rCBF) changes. We suggest that tools based on decomposition of biomedical time series data into a mixture of temporally or spatially independent components can further provide us more information in the analysis of biomedical image signals. In present study, we collected 27 PD patients in various stage of disease and 24 health controls. Clinical staging and motor symptoms in PD were measured by UPDRS scores (United Kingdom of Parkinson’s Disease Rating Scale) and Hoehn and Yahr stage. 99mTc-HMPAO SPECT (single photon emission computerized tomography) image was arranged for both patients and controls. We applied Independent Component Analysis (ICA) to assess the difference in rCBF between PD patients and healthy controls to identify brain regions involving in PD. Finally, statistic parametric mapping (SPM) tool was use to identified statistic significant regions between PD and controls. We also applied motor part UPDRS score to correlate with these significant regions and find brain areas responsible for clinical scores.
    Results: After ICA decomposition, 9 independent components were classified as “disease related” subset and 42 as “non-disease related” subset. In “disease-related” subset, SPM revealed many brain areas identified by ICA included the basal ganglia, the brainstem, the cerebellum, and the cerebral cortex. Some of the regions have been largely overlooked in neuroimaging studies using region-of-interest approaches, yet they are consistent with previous pathophysiological reports. Besides, rCBF in limbic system included cingulated gyrus and limbic lobe had demonstrated not only had significant difference between PD and controls, but also had significant correlated with disease symptoms. These had not been reported in previously literatures.
    Conclusions: Our study had showed that use ICA as image preprocessing step followed by SPM statistic analysis could significant improve image analysis results. However, our patients were on medication and patient number was not large, which should be caution in further interpretation our results. Since ICA has the ability to solve the blind source separation problem of recovering independent source signals after they are linearly mixed by an unknown matrix, we expect that ICA might be valuable to suggest a new alternative and more comprehensive disease and brain circuit models in PD.
    数据类型: thesis
    显示于类别:[醫學資訊研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    摘要.doc34KbMicrosoft Word664检视/开启
    摘要.pdf92KbAdobe PDF230检视/开启
    摘要.ps787KbPostscript110检视/开启
    摘要2.ppt129KbMicrosoft Powerpoint459检视/开启


    在TMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈