English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2558733      線上人數 : 285
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61833


    題名: Artificial Intelligence Approach for Dengue Early Warning System
    作者: NINGRUM, DINA NUR ANGGRAINI
    NINGRUM, DINA NUR ANGGRAINI
    貢獻者: 醫學資訊研究所博士班
    李友專
    徐建業
    關鍵詞: artificial intelligence;dengue outbreak prediction;dengue incidence cases prediction;early warning system
    日期: 202-01-12
    上傳時間: 2022-08-12 10:06:52 (UTC+8)
    摘要: Background: Dengue fever is a viral infectious disease transmitted through mosquito bites, and has symptoms ranging from mild flu-like symptoms to deadly complications. More than half of the world's population is estimated to be at risk of dengue fever. Dengue fever is one of the global burden diseases which annually have 50-100 million cases with 500,000 cases of severe dengue fever, of which 22,000 deaths occur mostly in children. Despite the discovery of vaccines, vector control is still the main approach for prevention efforts. Early detection and accessibility to medical care can reduce severe Dengue mortality rate from 50% to 2%. In the previous study, both statistical and machine learning methods have the potential for predicting a Dengue outbreak, but the study is still fragmented and limited on implementing the generated model into an early warning system application.
    Research Aims: In this study, we developed an artificial intelligence model with spatiotemporal to predict Dengue outbreak and Dengue incidence case which is ready to be implemented into an early warning system application.
    Material and Methods: Indonesia, especially Semarang City, has experienced an endemic Dengue. We used Semarang City spatiotemporal, meteorological, climatological, and Dengue surveillance epidemiology data from January 2014 to December 2021 in 16 districts of Semarang City. We reviewed 7208 samples from 16 districts and 1 city per week during 8 years. The entire dataset was divided into training (80%) and testing (20%) to develop a prediction model. We used machine learning and Long Short Term Memory (LSTM) to predict Dengue outbreak 1 week before the event for each district. and machine learning to predict Dengue incident cases 1 week before the event for each district. Accuracy, area under the receiver operating characteristic curve (AUROC), precision, recall, and F1 score were considered to evaluate the Dengue outbreak prediction model. The Dengue incidence cases prediction model will evaluate using Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-Squared (R2).
    Results: Extra Trees Classifier model shown outperform in Dengue outbreak prediction, with accuracy 0.8925, AUROC 0. 9529, Recall 0.6117, precision 0.8880, and F1 score 0.7238. CatBoost Regressor model is shown to outperform in Dengue incidence cases prediction, with R2 0.5621, MAE 0.6304, MSE 1.1997, and RMSE 1.0891.
    Conclusions: The study proves that Artificial Intelligence (AI) with a spatiotemporal approach can give higher performance in Dengue outbreak and incidence cases prediction. Utilization of AI approaches that are sensitive with spatiotemporal feasibility to implement in Dengue early warning system application may contribute to increase the policy makers and community attention to do accurate community-based vector control.
    描述: 博士
    指導教授:李友專
    共同指導教授:徐建業
    委員:王大為
    委員:雪必兒
    委員:曾新穆
    委員:李友專
    委員:徐建業
    資料類型: thesis
    顯示於類別:[醫學科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML35檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋