Taipei Medical University Institutional Repository:Item 987654321/6178
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 45073/58249 (77%)
Visitors : 2380353      Online Users : 150
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://libir.tmu.edu.tw/handle/987654321/6178


    Title: 音樂刺激下腦波信號分析
    Analysis of the EEG Signals in Response to Musical Signal Stimuli
    Authors: 林威志
    Wei-Chih Lin
    Contributors: 醫學資訊研究所
    Keywords: 音樂
    頻譜分析
    獨立元件分析法
    腦波
    導程
    相關係數
    Music
    Spectral Analysis
    Independent Component Analysis (ICA)
    Electroencephalographic (EEG)
    Channel
    Correlation
    Date: 2004
    Issue Date: 2009-09-11 16:23:19 (UTC+8)
    Abstract: 近幾年中,越來越多研究在探討音樂在生理上之影響。腦波是過去被廣泛應用在測量腦部活動上之生理訊號。本研究中,我們嘗試運用頻譜分析和獨立元件分析法來分析受測者對不同類型音樂刺激下之腦波反應。

    本研究擷取三十二位受測者於接受不同音樂訊號刺激下之腦波,音樂訊號刺激分別為重金屬樂(Metal)、鋼琴奏鳴曲(Sonata)、受測者自選音樂(Favorite)和無音樂狀態(No Music)。將腦波訊號依頻率不同濾波成Alpha、Beta、Theta與Gamma波,並計算各波中各導程之能量值,並依此值作為特徵求出各導程間不同音樂刺激與不同受測者間之相關係數。

    結果顯示,在Metal狀態下,有最小的Alpha能量。而在No Music狀態下,Gamma能量呈現較小的情況。顯示聆聽音樂時會出現Gamma波,而聽Metal時會降低Alpha波。

    而在個體間之差異情形探討上,發現聆聽Metal時,不同個體間腦波特徵相似度高,而聆聽Favorite時,相似度最小。顯示聆聽Metal可引起較為相似之腦波。此外本研究發現,前顱左半區域於三情境下(Metal、Sonata、Favorite)腦波相似度差異較大,代表此區對腦部音樂感知較為敏感,也就是不同音樂類型會引起相似度較小之腦波。

    此外,本研究發覺個體間的腦波差異大於音樂所引起之腦波差異,故腦波研究上如何排除降低因個體不同所造成研究資料之差異,將可對研究目的降低變數達到更準確之分析。

    本研究中,我們亦嘗試ICA分析,發覺腦波經ICA後所得之某些獨立元件在頻譜分析上,對於不同情境可顯示其頻譜能量差異,但並非每一個體實驗皆有此現象。
    In recent years, many researches have focused on the physiological effects of music. The electroencephalographic (EEG) is often used to verify the influences of music on human brain activity. In this study, we attempted to apply the spectral analysis and the independent component analysis (ICA) to analyze and to discover the EEG responses of subjects with different musical signal stimuli. It is expected that some features on EEG can be demonstrated to reflect the different musical signal stimuli.

    The EEGs of thirty-two healthy volunteers listening to different music was acquired. Musical signal stimuli are categorized into metal music, sonata music, no music and the favorite music selected by subjects. Spectral analysis wase applied to obtain the Alpha, Beta, Theta and Gamma band power of EEG signal under different music stimuli. The power at each band of each channel was used as the features of EEG. The correlation of the features between different situations and subjects was used to show which channel displays the difference of EEG signals.

    The results show that minimum alpha power was recorded in listening to metal music and the power of gamma band is lower when listening to no music, which imply that gamma band appears during music listening process, and reduction of alpha band occurs when listening to metal music.

    Regarding the difference between each individual, we found that the similarity between individuals is high when listening to metal music, and it is low when listening to favorite music. Besides, the similarity between each individual is high in the channel at the left of anterior cranial is highly different. When listening to metal music, sonata music and favorite music, which implies that this section may be sensitive to musical signal stimuli.

    Besides, the study discovers that the difference between individual is greater than the difference between musical signal stimuli. So how to eliminate the difference of EEG data caused by the difference of individual is important to obtain the accurate analysis results.

    In the study of independent component analysis, we discovered that some independent components of EEG can display the difference of spectral power in listening different music. But not every subject showed this phenomenon.
    Data Type: thesis
    Appears in Collections:[ ] Dissertations/Theses

    Files in This Item:

    File Description SizeFormat
    摘要.doc28KbMicrosoft Word115View/Open
    摘要.pdf68KbAdobe PDF228View/Open
    摘要.ppt123KbMicrosoft Powerpoint126View/Open
    摘要.ps401KbPostscript41View/Open


    All items in TMUIR are protected by copyright, with all rights reserved.


    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback