English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 44607/57715 (77%)
造訪人次 : 1621466      線上人數 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61664


    題名: 運用機器學習與深度學習預測缺血性中風的復發
    The use of machine learning and deep learning to predict the recurrence of ischemic stroke
    作者: 楊政道
    YANG, JHENG-DAO
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    許明暉
    關鍵詞: 缺血性中風;機器學習;深度學習
    Ischemic stroke;Machine learning;Deep learning
    日期: 2021-06-30
    上傳時間: 2022-04-28 23:15:26 (UTC+8)
    摘要: 中風是目前台灣的第四大死因,也是造成成人失能的最常見原因。根據之前研究,有3.1-18%的中風的病人在3個月內會發生再次中風。中風的再次發生將造成失能的程度更加嚴重,因此,如何去預防並且預測中風的再發生將有助於我們適時地調整治療策略,以減少再次中風發生的機率。本研究目的在於使用機器學習與深度學習的模式對缺血性中風病人5年內再次發生缺血性中風的可能性進行預測,我們使用的資料來自台灣的健保資料庫,收集的是病人首次缺血性中風時的住院資料(包含住院天數、醫院等級、出院情況、診斷、手術、藥物、醫療費用等)以及病人前3年的住院資料(住院天數、診斷、手術、醫療費用)與門診資料(診斷、手術、醫療費用)。使用的預測模式包含決策樹(decision tree)、隨機森林(random forest)、邏輯回歸(logistic regression)、貝氏演算法(Naïve Bayes)、自適應增強(AdaBoost)、支持向量機(support vector machine)、與深度學習網路(deep neural network)。我們研究發現機器學習建立的預測模型對於缺血性中風病人再中風的預測有不錯的表現,其中SVM模型在oversampling 50:50的處理後並藉由適當的特徵選取,其accuracy可以到84.1%、sensitivity可以到84.9%、specificity可以到83.5%、precision可以到80.2%。而以我們目前深度學習的結果而言,經過參數調整後其accuracy最高可以到78.5%,但其precision僅為0.1%而以目前的結果而言,無法顯示其預測表現較機器學習更佳。
    Stroke is currently the fourth leading cause of death in Taiwan and the most common cause of adult disability. According to previous studies, 3.1-18% of stroke patients will have another stroke within 3 months. The recurrence of stroke will cause more severe disability. Therefore, how to prevent and predict the recurrence of stroke will help us to adjust the treatment strategy in time to reduce the chance of recurrence. The purpose of this study is to use machine learning and deep learning models to predict the possibility of ischemic stroke recurrence in patients with ischemic stroke within 5 years. The data we use are from Taiwan’s health insurance database. Hospitalization data (including hospitalization days, hospital level, discharge status, diagnosis, surgery, drugs, medical expenses, etc.) during first-time ischemic stroke, hospitalization data (hospital days, diagnosis, surgery, medical expenses, etc.) in the previous 3 years, and outpatient data (Diagnosis, surgery, medical expenses) in the previous 3 years were collected. The prediction modes used included decision tree, random forest, logistic regression, Naïve Bayes, adaptive enhancement (AdaBoost), support vector machine, and deep neural network. Our research has found that the prediction model established by machine learning has a good performance in the prediction of re-stroke in patients with ischemic stroke. Among them, the SVM model has an accuracy of 84.1% after oversampling 50:50 processing and appropriate feature selection. The sensitivity can reach 84.9%, the specificity can reach 83.5%, and the precision can reach 80.2%. As far as our current deep learning results are concerned, its accuracy can reach 78.5% after opitimization of hyperparameters, but its precision is only 0.1%. Based on the current results, it cannot show that its prediction performance is better than machine learning.
    描述: 碩士
    指導教授:許明暉
    委員:謝邦昌
    委員:張詠淳
    委員:林明錦
    委員:陳龍
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML138檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋