English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2507243      線上人數 : 164
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61660


    題名: 運用機器學習預測新型口服抗凝血劑於非瓣膜性心房顫動病人之出血風險評估
    Evaluation of Machine-Learning Algorithm for Predicting Bleeding Risk in Patients with Non-valvular Atrial Fibrillation Treated with NOACs
    作者: 陳怡樺
    CHEN, YI-HUA
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    康峻宏
    關鍵詞: 新型口服抗凝血劑;出血風險;非維他命K拮抗劑口服抗凝血劑;機器學習
    NOACs;bleeding risk;Non-vitamin K antagonist Oral Anticoagulants;machine learning
    日期: 2021-06-13
    上傳時間: 2022-04-28 23:04:30 (UTC+8)
    摘要: 一、研究目的與背景:
    心房纖維顫動(atrial fibrillation, AF)是臨床病人發生缺血性腦中風的重要危險因子。許多臨床研究已證實口服抗凝血劑可有效地預防AF病人中風發生及改善死亡率。從2011年起,非維他命K拮抗劑口服抗凝血劑(Non-vitamin K antagonist Oral Anticoagulants, NOACs )陸續核准用於非瓣膜性AF的預防。相較於warfarin,由於NOACs有較高的安全性,此類藥物逐漸成為AF病人抗凝治療的首選藥物。一般而言,NOACs造成的嚴重出血風險約為1.6~3.6%,但Chao等人的研究中發現,NOACs在亞洲次族群的出血風險可能較高,顯示評估亞洲族群使用NOACs的安全性為臨床重要議題。本研究將針對NOACs引發重大出血事件之病人進行分析,透過機器學習演算方法,找出出血病人的可能危險因子,並建立適合亞洲族群之出血風險預測模型。

    二、研究材料與方法:
    本研究分析2010年7月1日至2020年12月31日間於長庚醫療體系就醫的電子病歷資料。研究將先找出於2011年1月1日至2019年12月31日間初次處方NOACs(包含direct thrombin inhibitor dabigatran and direct factor Xa inhibitors apixaban, edoxaban, rivaroxaban等四種藥品)之非瓣膜性AF病人(ICD-9 427.3, ICD-10 I48),並由首次用藥日開始追蹤至用藥後一年、死亡、發生重大出血或失去追蹤。重大出血之定義乃依據國際血栓暨凝血學會(International Society on Thrombosis and Haemostasis ,ISTH)非手術病人重大出血事件所指之致死性出血;體內重要器官或特殊部位出血;以及出血所致hemoglobin下降超過2g/dL或需要輸注2個單位全血或紅血球細胞者等三項。

    三、分析與結果:
    納入研究對象為14,574人,男性6,138人(42.12%)、女性8,436人(57.88%),平均觀察期為8.4個月;在研究期間內發生致死性出血者,共有109件;體內重要器官或特殊部位出血者,共有527件。研究發現胰島素、抗黴菌劑及貧血是重大出血事件的重要預測因子,以機器學習方法比較現況HAS-BLED score的c-index(RF 0.738, 95% CI 0.703-0.773;XGBoost0.731, 95%CI 0.697-0.766;LR 0.725, 95%CI 0.692-0.759;SVM 0.664, 95%CI 0.623-0.705)及modified HAS-BLED score的c-index(RF 0.81, 95%CI 0.780-0.841;XGBoost0.800, 95%CI 0.767-0.833;LR 0.795, 95%CI 0.763-0.826;SVM 0.737, 95%CI 0.702-0.772)新模型風險預測結果,證實modified HAS-BLED score出血風險預測能力確實優於現有評分工具。

    四、討論:
    運用真實世界之大數據進行機器學習,確實能找出亞洲族群具重大臨床意義之出血風險因子,與傳統評估工具HES-BLEDscore相比,以胰島素、抗黴菌劑及貧血調整後之新模型確實提供了更準確的風險預測能力,且增加臨床執行可近性。
    Background:
    Atrial fibrillation(AF)is one of the most important risk factors for embolic stroke. Numerous clinical studies have proved that oral anticoagulants could effectively prevent stroke and improve mortality in patients with AF. Since 2011, non-vitamin k antagonist oral anticoagulants (NOACs)have been approved in the preventions of stroke in patients with non-valvular Atrial fibrillation(NVAF). Compared to warfarin, NOACs have more acceptable safety profiles, gradually serving as the first-line choice for stroke prevention in NVAF. Overall, the risk of severe bleeding events caused by NOACs is estimated about 1.6~3.6%, but the report from Chao et al. found that NOACs may have higher bleeding risks in Asian population which indicates the critical importance of the safety evaluation regarding the uses of NOACs in Asia countries. This study will include AF patients with major bleeding events caused by NOACs in Taiwan to identify the possible risk factors for bleeding and to establish a risk prediction model for bleeding events by using machine learning algorithms.

    Material and Methods:
    We conducted a series of retrospective cohort studies by using CGRD. The patients with NVAF(ICD-9 427.3, ICD-10 I48)who were included who had their first prescription of an NOAC including dabigatran, apixaban, edoxaban, or rivaroxaban treatment from January 2011 to December 2019and start tracking from the day of first prescription after one year, death, major bleeding or loss of follow-up. Major bleeding was defined by the International Society on Thrombosis and Hemostasis(ISTH)criteria that including:1.fatal bleeding, 2. symptomatic bleeding in a critical area or organ, and 3.Bleeding causing a fall in hemoglobin level of 2 g/dL (1.24 mmol/L)or more, or leading to transfusion of two or more units of whole blood or red cells. We will analyze patients with major bleeding events caused by NOACs, using machine learning algorithms to identify possible risk factors, and establish a prediction model suitable for Asian ethnic groups.

    Results:
    We identified a total of 14,574 NVAF patients newly initiating NOACs in this study, most of whom (57.9%) were female. During the mean follow-up of 8.4 months, 2,112patients developed major bleeding events, including 109 for fatal bleeding, 527 for symptomatic bleeding in a critical area or organ. We found the insulin, fungostatics and anemia were the important predictors for major bleeding. Compared toHAS-BLED score(RF 0.738, 95% CI 0.703-0.773;XGBoost0.731, 95%CI 0.697-0.766;LR 0.725, 95%CI 0.692-0.759;SVM 0.664, 95%CI 0.623-0.705), the modified HAS-BLED score(RF 0.81, 95%CI 0.780-0.841;XGBoost0.800, 95%CI 0.767-0.833;LR 0.795, 95%CI 0.763-0.826;SVM 0.737, 95%CI 0.702-0.772)with the incorporation of three new predictors yielded a higher c-indexfor major bleeding.

    Conclusions:
    In this real-world cohort from Taiwan, the modified HAS-BLED score by incorporating insulin, fungostatics and anemia was associated with better major bleeding risk predictions, compared with the HES-BLED score. Further external validation of the modified HAS-BLED score should be performed.
    描述: 碩士
    指導教授:康峻宏
    委員:林彥光
    委員:洪明銳
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML160檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋