English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2514332      線上人數 : 220
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61659


    題名: 卷機類神經網路實作:機器學習肋骨骨折的胸部X光線平片影像辨識
    Convolutional Neural Network for Recognition in Rib Fracture from Radiographic Plain Film
    作者: 江紀明
    CHIANG, CHI-MING
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    康峻宏
    關鍵詞: 肋骨骨折;深度學習;卷機類神經網路
    rib fracture;deep learning;Convolutional Neural Network
    日期: 2021-07-14
    上傳時間: 2022-04-28 23:01:49 (UTC+8)
    摘要: 肋骨骨折在胸部創傷中約佔61%至90%,X光線平片是檢查的首選方法。但是,往往因疼痛後的非精確的檢查擺位,造成投照體位與角度,甚或是X光線曝光條件選擇的不當,而造成臨床醫師判斷的困難而造成漏診。藉由胸部電腦斷層的輔助,可提高約4倍的肋骨骨折確診率;X光線平片的漏診率為5.91%,胸部電腦斷層的漏診率為1.63%。然而,三維電腦斷層的醫療成本較高,若是能以人工智慧對X光線平片進行影像辨識,初步篩選出肋骨骨折疑似病例後,再輔以胸部電腦斷層確診,既可降低醫療成本;亦可減低醫師負擔。因此本論文欲藉由深度學習之卷機類神經網路的研究方法,對胸部X光線平片進行肋骨骨折的影像辨識。
    就健康經濟學的層面而言,醫師作決策的方法是找出最小成本的方法,並在此選項下保證一定的準確率。而所謂的成本同時包括醫療檢查花費及後續治療成本、以及肋骨骨折的漏診與病患失能所造成的等值貨幣損失、醫師因漏診而承擔的醫療訴訟賠償、與病患失去未受傷前之工作收入等。綜上所述,吾等預期的成果為:藉由本論文所提供之研究方法,降低肋骨骨折之醫療診斷成本與醫師影像判讀的負擔。
    Fractures of the ribs account for about 61% to 90% of chest trauma, and plain film in radiography are the preferred method of examination in the first place. However, the inaccurate positioning in the examination caused by the pain often results in improper selection of the position and angle of the projection, or even the improper selection of the X-ray exposure conditions. With the assistance of chest computer tomography, the diagnosis rate of rib fractures can be increased by about 4 times; the missed diagnosis rate of plain X-ray films is 5.91%, and the missed diagnosis rate of chest computer tomography is 1.63%. However, the medical cost of 3D computer tomography is relatively high. If it is possible to use artificial intelligence to identify X-ray plain films in suspected cases of rib fractures for initially screen, then supplemented with chest computer tomography to confirm the diagnosis can reduce medical costs. Moreover, it also can reduce the burden on physicians. Therefore, this thesis intends to use the research method of the deep learning (Convolutional Neural Network) to identify the rib fracture image on the chest X-ray plain film.
    In terms of health economics, the way doctors make decisions is to find the option with the lowest cost, and to ensure a certain threshold of diagnosis under this option. The so-called cost includes the cost of resources for medical examinations for diagnosis and follow-up treatment, as well as the equivalent of monetary loss caused by missed diagnosis of rib fractures and patient disability; medical lawsuit compensation and patient loss caused by missed diagnosis. In summary, the expected result of this theory is to reduce the cost of medical diagnosis of rib fractures and the burden of physicians' interpretation of images by the research methods provided by this theory.
    描述: 碩士
    指導教授:康峻宏
    委員:彭徐鈞
    委員:陳右潁
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML164檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋