English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 44607/57715 (77%)
造訪人次 : 1621517      線上人數 : 127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61658


    題名: 利用卷積神經網路輔助影像診斷- 急性會厭炎X光之急診應用
    Using Convolutional Neural Network in neck-lateral-radiograph to diagnose acute epiglottitis in emergency department
    作者: 林暘策
    LIN, YANG-TSE
    貢獻者: 醫學院人工智慧醫療碩士在職專班
    謝邦昌
    康峻宏
    關鍵詞: 急性會厭炎;卷積神經網路;人工智慧;早期診斷;頸部X光;醫學影像;轉移式學習;急診醫學;急診室;誤診
    emergency room;acute epiglottitis;early diagnosis;misdiagnosis;convolutional neural network;artificial intelligence;transfer learning;neck-lateral-radiograph;medical image;neck x-ray
    日期: 2021-06-24
    上傳時間: 2022-04-28 22:59:05 (UTC+8)
    摘要: 急性會厭炎是一種隨時危及生命的疾病,臨床上若懷疑病人罹患急性會厭炎時,就必須積極治療並密切觀察呼吸道是否阻塞,若延誤診斷則會造成死亡等嚴重後果;而在急診室,最常使用的非侵入性影像工具就是由頸部X光影像(neck-lateral-radiograph)來判讀會厭附近構造是否腫脹。目前已有許多研究使用預先訓練完成的卷積神經網路(CNN pretrained model) 作轉移式學習(transfer learning),並應用在醫療影像上的經驗,因此本研究想透過卷積神經網路轉移式學習,提出一個影像診斷模型來協助判讀頸部X光:可以達到快速診斷的目的,提供一種客觀的診斷標準。
    本研究蒐集病例源自台灣北部兩家醫療院所,實驗組來自於病例回顧,年齡大於18歲之成年人,由急診入院且出院診斷為急性會厭炎,就診期間經內視鏡( fiberoptic laryngoscopy)確診為會厭炎。對照組來自於年齡大於18歲之成年人之門診頸部X光,X光正式報告判讀無急性會厭炎,且病例紀錄沒有急性會厭炎之臨床症狀,將這些蒐集到的影像,輸入不同的卷積神經網路作轉移式學習,最後將資料集進行交叉驗證(5-fold-cross-validation),得到最後模型對測試資料集之預測成果。
    實驗組:蒐集急性會厭炎之病人頸部X光影像共251位,男性佔62.2%,女性佔37.8%,病人平均年齡為46.2±14.4;而對照組之病人頸部X光影像共938位,男性佔63%,女性佔37%,病人平均年齡為46±15;本研究最後選用InceptionV3作為卷積神經網路模型,並經過交叉驗證後得到的表現:準確度為0.920,F-score為0.918,AUC為0.965。
    本研究得到的結果顯示,以卷積神經網路作為模型對於急性會厭炎的X光具有良好的診斷能力。透過卷積神經網路來提升X光對於急性會厭炎之診斷能力,提供了一項新的非侵入性,準確,且快速的診斷工具;將此輔助診斷模型導入急診醫師的影像診斷流程中,在未來可以急診室系統上,輔助臨床醫師,幫助影像診斷致命的急症,降低診斷錯誤並且加速診斷流程。
    Background: Acute epiglottitis is a life-threatening disease at all times. If the patient is suspected of having acute epiglottitis, delay in diagnosis and treatment will cause serious consequences such as respiratory obstruction or even death. The most commonly used non-invasive imaging method to diagnose acute epiglottitis in the emergency room is a neck-lateral-radiograph. Currently, many studies have used pre-trained convolutional neural networks (CNN) to perform transfer learning and assist the analysis of medical images. This research aimed to develop a diagnostic model using CNN-based transfer learning to propose an imaging diagnostic model to assist in the interpretation of neck-lateral-radiograph. This diagnostic model can achieve the purpose of rapid diagnosis of acute epiglottitis and provide an objective diagnostic standard of neck-lateral-radiograph as well.
    Methods: The cases collected in this study came from two medical institutions in northern Taiwan. The acute epiglottitis came from cases review and met the following conditions: Adults older than 18 years old were admitted to the emergency department and discharged from the hospital with a diagnosis of acute epiglottitis. The diagnosis of acute epiglottitis had been confirmed by fiberoptic laryngoscopy during treatment. The control group came from outpatient neck X-rays of adults over 18 years of age. The official X-ray report judged that there was no acute epiglottitis, and the medical records did not have clinical symptoms of acute epiglottitis. The collected images were input into different pre-trained convolutional neural networks, and finally obtain the prediction results of the final model on the test data set trough cross-validated (5-fold-cross-validation).
    Results: Overall, 251 lateral neck radiographs of patients with acute epiglottitis and 936 healthy individuals were collected. Inception V3 was used as the pertained model. Based on the average value of the k-fold cross-validation (k=5), the following performance metrics were obtained: accuracy=0.920, F-score=0.918, and area under the curve=0.965.
    Conclusion: As shown by the results of the five-fold cross-validation performed on the pre-pertained model (Inception V3), using CNN as the pre-trained model can provide a good diagnostic performance of acute epiglottitis based on radiographic images. Analysis of radiographic images using CNN provides a novel non-invasive, accurate, and fast diagnostic method for acute epiglottitis. In the future, this CNN-based diagnosis model can be introduced into the imaging diagnosis process of emergency physicians, and assist the clinicians in imaging diagnosis of fatal emergencies, reduce diagnosis errors and speed up the diagnosis process.
    描述: 碩士
    指導教授:康峻宏
    指導教授:謝邦昌
    委員:彭徐鈞
    委員:黎阮國慶
    委員:蘇家玉
    資料類型: thesis
    顯示於類別:[人工智慧醫療碩士在職專班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML179檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋