English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2530669      線上人數 : 250
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/6158


    題名: 心雜音之自動分析模式建立
    Establishing an Automatic Analysis Model for Cardiac Murmurs
    作者: 楊坤璋
    Kun-Chang Yang
    貢獻者: 醫學資訊研究所
    關鍵詞: 心雜音
    聲音訊號處理
    ROC 曲線
    類神經網路
    Cardiac murmur
    acoustic signal processing
    ROC curves
    Artificial neural network
    日期: 2004
    上傳時間: 2009-09-11 16:22:11 (UTC+8)
    摘要: 心雜音是臨床診斷上的重要參考,可對心臟結構或病理問題做早期診斷,而今,心臟聽診仍是確認心雜音的重要技術,且需具備相當經驗,因此,我們將評估聲音訊號處理及統計方法在心雜音分析上的應用。
    在心音訊號的蒐集上,本研究共蒐集了31個有心雜音的樣本(年齡從42到89歲;平均年齡71.1歲)及32個正常樣本(年齡從19到36歲;平均年齡22.3歲),透過對收錄訊號的處理與分析,及使用兩群體之Student’s T檢定後,發現有心雜音的群體及正常心音群體間,在某些頻率區間其能量比值有顯著差異。
    接著,我們對每一頻率區間之能量比值予以排序,並取兩相鄰樣本其值的平均為候選鑑別值(threshold),依醫學決策中ROC(Receiver Operating Characteristic) Curve的定義繪製出ROC 曲線,結果發現雖然在部份頻率區間其最佳鑑別值的TPR(True-Positive Rate)值可達80%以上,但此時其FPR(False-Positive Rate)值卻超過30%,因此我們另引用類神經網路(Artificial Neural Networks)的方法以改善效能。
    STATISTICA Neural Networks是一套綜合且快速的類神經網路分析套裝軟體,我們用其Intelligent Problem Solver功能以找出合適的類神經網路架構,先使用48個樣本來訓練與建立類神經網路模組,然後再利用其餘的15個樣本來驗證該模組,經多方的試算與分析,我們得到的最佳模組為多層感知器(Multilayer Perceptrons; MLP)架構:輸入變數40個(所有頻率區間能量比)、隱藏層具14個神經元及1個輸出變數,對15個測試樣本驗證結果中,正確率為100% (TPR為100%;FPR為0%)。
    在本研究中,我們已對所蒐集的樣本建立了自動分析模式,希望將來能在此基礎上,隨著樣本的擴增及技術的精進,發展出判別心雜音的自動系統。
    Cardiac murmur is significant in clinical diagnosis, and can be used to diagnose the physiological problems (physiology program) of heart earlier. (Up to now, auscultation of the heart is still a critical and definite skill required to identify and diagnose these murmurs). Auscultation is still the key method to identify cardiac murmurs but relies much on experience. Therefore, we evaluated the application of acoustic signal processing technique and statistical methods for cardiac murmur analysis.
    Thirty-one cases (aged 42 to 89 years; mean 71.1 years) who were diagnosed to have cardiac murmurs and 32 cases (aged 19 to 36 years; mean 22.3 years) were included in this study. The recorded data have been processed and analyzed. Using the Student’s t-test, we found that there were significant differences between the normal and abnormal cases at specific frequency intervals.
    Furthermore, we sorted the ratio of energy for every frequency interval, and picked every mean value of the neighboring pairs for candidate threshold. By the definition of Receiver Operating Characteristic (ROC) curves in medicine decision, we got the ROC curves and found that the true positive rate was more then 80% at some specific frequency intervals, but the false positive rate was above 30%. We expected to improve the performance more by using Artificial Neural Networks.
    STATISTICA Neural Networks is a comprehensive and rapid neural network data analysis package. We use its Intelligent Problem Solver to get an initial idea of right neural network architecture. We picked and built networks, trained them in 48 cases, and tested them in another 15 cases later. After many times of computing, we got a Multilayer Perceptorns model, which used 40 input parameters, 14 neural units in hidden layer and 1 output parameter. That model was 100% correct for 15 study cases. (The true positive rate was 100% and false positive rate was 0%.)
    In this study, we demonstrated an automatic analysis model for collected cases. Base on this foundation, we plan to develop an automatic determine system of cardiac murmurs in the future.
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    摘要.doc28KbMicrosoft Word113檢視/開啟
    摘要.pdf68KbAdobe PDF112檢視/開啟
    摘要.ppt150KbMicrosoft Powerpoint96檢視/開啟
    摘要.ps421KbPostscript75檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋