English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 44607/57715 (77%)
造訪人次 : 1621417      線上人數 : 57
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61510


    題名: 以資料探勘技術開採臨床膀胱癌數據並導入機器學習開發癌症早期預測模型
    Model for Prediction of Early Bladder Cancer by Exploration Clinical Data with Machine Learning Approach
    作者: 李佳玲
    LEE, CHIA-LING
    貢獻者: 醫學檢驗暨生物技術學系碩士在職專班
    林景堉
    關鍵詞: 膀胱癌;機器學習;隨機森林;膀胱炎
    Bladder urothelial carcinoma;Machine learning;Random forest;Cystitis
    日期: 2021-07-01
    上傳時間: 2022-03-28 19:17:56 (UTC+8)
    摘要: 膀胱為儲存尿液的器官,因需與人體代謝後的尿液接觸,膀胱有長時間與高度機會接觸並浸泡在尿液中的各樣物質裡,使其組織容易產生病變與癌化。無痛血尿、頻尿、小便疼痛等為常見之膀胱癌症狀,常發生於男性、抽煙、飲酒、有家族病史的患者身上。依世界衛生組織公告,膀胱癌(Bladder urothelial carcinoma, BLCA)已名列全球十大癌症之一。在台灣,膀胱癌在男性十大癌症中也佔有一席之地。
    不同於腹腔一帶或泌尿相關的其他癌症,膀胱癌除了切片看形態學之外,目前並沒有其他非侵入式的診斷指標可參考。本研究欲透過資料探勘與機器學習之技術,用於臨床大數據中相關之檢驗項目如尿液常規檢查、血液生化檢查、病理細胞學檢查結果等資料提取特徵,建立偵測膀胱癌生成及分辨的模型。
    研究樣本收集北部某醫學中心2009~2019 十年間病理報告有確診膀胱癌(BLCA)、 腎癌(Kidney renal clear cell carcinoma, KIRC)、男性的前列腺癌(Prostate adenocarcinoma, PRAD)及女性的子宮體或子宮頸癌(Cervical squamous cell carcinoma and endocervical adenocarcinoma, CSEC)四類癌症的患者資料。另做為比對,加收病理報告為膀胱炎(Cystitis)者。
    經Python進行資料探勘,並以10 fold交叉驗證進行機器學習,在經參數調整後,以隨機森林建立出不錯的膀胱癌分辨模型,從膀胱炎正確分辨膀胱癌的準確度可達71.8%,從腎臟癌正確分辨膀胱癌準確度可達74.2%,從攝護腺癌正確分辦膀胱癌的準確度可達78%,而從子宮體癌正確分辨膀胱癌的準確度高可達86.8%。
    本次研究結果展現,應用資料探勘與機器學習的技巧於容易取得的臨床數據資料中,可以建立不錯的機器學習模型,有助於提升癌症早期發現的機會。
    Urinary bladder is the organ responsible for urine storage. Due to its long period of contact with urine, the bladder has a high chance of immersing in various chemical substances, making the tissue in high risk of neoplastic changing. Painless hematuria, frequent urination, and painful urination are common symptoms of bladder cancer, which often occur in men, people with smoking or drinking habits, and patients with family history. According to the World Health Organization, bladder urothelial carcinoma (BLCA) has been listed as one of the top ten cancers in the world. In Taiwan, bladder cancer is also listed among the top ten cancers in men.
    Unlike other cancers in the abdominal cavity, bladder cancer has no other non-invasive indicator but biopsy through cystoscope. Our study intends to use data mining and machine learning techniques to extract features from clinical data such as urine routine, blood examination, and cytology results to establish models for detection of bladder cancer.
    We collected cases from one medical center during 2009 to 2019. Pathological reports confirmed as bladder urothelial carcinoma (BLCA), kidney renal clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CSEC) are collected. For comparison, cases with pathological report of cystitis are also collected.
    Using python for data exploration, and machine learning with 10 fold cross-validation carried out. After parameter adjustment, Random forest established a good bladder cancer discrimination model. The accuracy of correctly distinguishing bladder cancer from cystitis is 71.8%, from kidney cancer is 74.2%, from prostate cancer is 78%, and from uterine cancer is 86.8%.
    The results of this study shows that the application of data mining and machine learning techniques in clinical laboratory data can build good models for improvement of early detection of cancer.
    描述: 碩士
    指導教授:林景堉
    委員:陳威戎
    委員:蘇家玉
    資料類型: thesis
    顯示於類別:[醫學檢驗暨生物技術學系所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1327檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋