English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2524314      線上人數 : 217
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/6144


    題名: 預測冠狀動脈繞道手術之重大併發症 - 類神經網路模型之建構及分析
    Development and Validation of an Artificial Neural Network Prediction Model for Major Adverse Outcomes after Coronary Artery Bypass Graft (CABG) Surgery
    作者: 張志華
    Chee-Fah Chong
    貢獻者: 醫學資訊研究所
    關鍵詞: 類神經網路
    冠狀動脈繞道手術
    預測模型
    Artificial neural network
    Coronary artery bypass graft surgery
    Prediction model
    日期: 2003
    上傳時間: 2009-09-11 16:21:37 (UTC+8)
    摘要: 目的:本篇論文之目的系建構及分析一人工類神經網路模型,用於預測心肺體外循環式冠狀動脈繞道手術 (CABG) 之重大併發症 (包括死亡、心臟休止、昏迷、腎衰竭、心肌再次壞死、腦中風或呼吸器依賴)。 我們也將此一類神經網路模型之研究結果與傳統統計學之羅吉斯迴歸模型及危險因子分數模型作比較。
    方法:此回溯性研究包含了五年當中 563 位單獨接受心肺體外循環式冠狀動脈繞道手術之病患,利用患者手術前的臨床資料 (如年齡、性別、血液檢驗結果、心導管檢查結果等等) 來建構一類神經網路預測模型用於預測其住院期間發生術後重大併發症之機率。 最後,我們利用 ROC 曲線 (receiver operating characteristic curve) 及 ROC 分析法對此一類神經網路模型之鑒別能力作分析,也將此分析結果與傳統統計學之羅吉斯迴歸模型及危險因子分數模型作比較。
    結果:研究中,大約有 12.3% 之病患在接受心肺體外循環式冠狀動脈繞道手術之後發生重大併發症。所建構之類神經網路預測模型包含了 18 個預測因子 (輸入因子)。 測試結果發現類神經網路模型有最大的 ROC 曲線下面積 (AUC = 0.886)。 類神經網路模型之 AUC 雖遠大於危險因子分數模型之 AUC,但與羅吉斯迴歸模型之 AUC 比較卻無統計學上之顯著差異。 羅吉斯迴歸模型與危險因子分數模型之 AUC 亦無統計學上之顯著差異。 此外,在兩個關鍵的ROC 曲線臨界點上,類神經網路預測模型都有最佳之共存敏感度及特異度。
    結論:未來如果有更龐大更完整的資料庫以及更精確的運算模式,類神經網路預測模型的科技將可以對心肺體外循環式冠狀動脈繞道手術是否會發生重大併發症提供即時而準確的預測。
    OBJECTIVE: In this study, we construct and internally validate an artificial neural network (ANN) model for prediction of in-hospital major adverse outcomes (defined as death, cardiac arrest, coma, renal failure, reinfarction, cerebrovascular accident, or prolonged mechanical ventilation) in patients who received ''on-pump'' coronary artery bypass grafting (CABG) surgery. The results were compared with two other conventional statistical models: a logistic regression model which is developed using the same dataset, and a clinical risk score model previously described in the literature.
    METHODS: We use a descriptive, non-experimental design to retrospectively analyze data from an existing 5-year CABG surgery database with a final study population of 563 patients. We assessed in-hospital major adverse outcomes and their predictors using information on admission, coronary angiography, and postoperative hospital course. Predictive variables were limited to information available before the procedure, and outcome variables were represented only by events that occurred postoperatively. The ANN''s ability to discriminate outcomes was assessed using receiver operating characteristic (ROC) analysis and the results were compared with a multivariate logistic regression model and a clinical risk score model.
    RESULTS: A major adverse outcome occurred in 12.3% of all patients and 18 predictive variables were identified by the ANN model. When tested on the same validation set, the ANN model has the greatest area under the ROC curve (AUC = 0.886). Statistically, the ANN model performed much better (p < 0.05) than the risk score model (AUC = 0.752). However, pairwise comparison between the ANN and LR (AUC = 0.807) models showed similar performance (p = 0.076). The LR and RS models perform similarly well (p = 0.453). The ANN model also has the best simultaneous sensitivity and specificity at two predefined cut-off values.
    CONCLUSION: With larger, more complete databases, and with advanced network algorithms, the ANN technology becomes an increasingly useful tool for real-time, accurate prediction of any postoperative major adverse outcome in CABG surgery.
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    摘要.doc29KbMicrosoft Word120檢視/開啟
    摘要.pdf70KbAdobe PDF147檢視/開啟
    摘要.ppt146KbMicrosoft Powerpoint187檢視/開啟
    摘要.ps425KbPostscript63檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋