English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45073/58249 (77%)
造訪人次 : 2396876      線上人數 : 161
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61404


    題名: 開發多任務深度森林演算法
    Development of Multi-Task Deep Forest Algorithms
    作者: 許崴翔
    HSU, WEI-HSIANG
    貢獻者: 智慧數據應用產業碩士專班
    童俊維
    關鍵詞: 演算法
    Algorithm
    日期: 2021-07-09
    上傳時間: 2022-03-03 11:39:26 (UTC+8)
    摘要: 多任務學習使用來自多個任務的數據來訓練機器學習模型同時,使用共享表示來學習一系列相關任務之間的共同特徵關係。這些共享表示可提高數據效率,並可能為相關或下游學習帶來更快的學習速度任務,有助於降低深度學習在大規模數據需求和計算要求的學習門檻。多任務學習比單任務學習能夠更加準確地反映了人類的學習過程,因為跨領域集成知識是人類很自然而然的學習方式。目前的多任務學習基於深度學習在設計,但這遇到了訓練成本高的問題。需要大量的訓練才能達到滿意的程度,而很多問題找不到足夠的數據,這類問題並不能很好地解決,也因此無法被用於小規模數據任務。

    深度森林是近來基於集成樹模型的深度學習框架,相較於深度神經網絡在調整超參數的過程需要花費較多的心力,深度森林在超參數的調整上要容易得多。訓練過程的效率高同時具有可擴展的設計也是深度森林的特色。另外,深度森林在訓練數據規模較小的情況下也能做運算,同時具備很有兢爭力的預測結果。作為一種以樹模型為基礎的演算法,深度森林較深度神經網絡能有更好的解釋性。不過目前的深度森林的設計是針對單一任務作演算,無法應用在多任務的設計上。

    因此,我們開發了多任務深度森林。多任務深度森林目標會聯合坎入各自任務在每一層分析完後產出的特徵,用於發現彼此的表現關係。我們採用了深度森林演算法當基礎做出展開搭配多任務架構的設計用於解決少量數據資料的問題,同時基於深度森林的設計,多任務深度森林演算法同樣能解決控制模型複雜度以減少過擬合問題。實驗說明,我們提出的方法不僅在基準測試的評價標準上勝過了深度森林,同時具備在多任務學習中,在特徵關係上找尋相似度有不錯的分辨率並且能排列出所有任務的影響性,透過多任務深度森林演算法,我們最終可以找出最佳任務組合來做預測數據的模型,透做這個多任務的組合所產生的模型,我們可以得到較好的預測數據資料。
    Multi-task learning uses data from multiple tasks to train machine learning models. At the same time, it uses shared representations to learn common feature relationships between a series of related tasks. These shared representations can improve data efficiency, and may bring faster learning speed tasks for related or downstream learning, and help reduce the learning threshold of deep learning in large-scale data requirements and computing requirements. Multi-task learning can reflect the human learning process more accurately than single-task learning, because cross-domain knowledge integration is a natural way for humans to learn. The current multi-task learning is designed based on deep learning, but this encounters the problem of high training costs. It takes a lot of training to reach a satisfactory level, and many problems cannot be found with enough data. Such problems cannot be solved well, and therefore cannot be used for small-scale data tasks.

    Deep forest is a recent deep learning framework based on an integrated tree model. Compared with deep neural networks that require more effort to adjust the hyperparameters, the adjustment of hyperparameters is much easier for deep forests. The high efficiency of the training process and the extensible design are also the characteristics of Deep Forest. In addition, Deep Forest can also perform calculations even when the training data is small, and at the same time it has very competitive prediction results. As an algorithm based on tree model, deep forest has better interpretability than deep neural network. However, the current design of Deep Forest is designed for a single task and cannot be applied to a multi-task design.

    Therefore, we developed a multi-task deep forest. The multi-task deep forest target will jointly check the characteristics of each task after analyzing each layer to find the relationship between each other's performance. We use the deep forest algorithm as the basis to develop a design with a multi-task architecture to solve the problem of a small amount of data. At the same time, based on the design of the deep forest, the multi-task deep forest algorithm can also solve the complexity of the control model to reduce the problem. Fitting problem. Experiments show that our proposed method not only outperforms the deep forest in the evaluation criteria of the benchmark test, but also has a good resolution in finding similarity in feature relationships in multi-task learning and can arrange the impact of all tasks. Through the multi-task deep forest algorithm, we can finally find the best combination of tasks to model the prediction data. Through the model generated by this multi-task combination, we can get better prediction data.
    描述: 碩士
    指導教授:童俊維
    委員:張詠淳
    委員:王家琪
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML665檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋