Taipei Medical University Institutional Repository:Item 987654321/61402
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45065/58241 (77%)
造訪人次 : 2252655      線上人數 : 235
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61402


    題名: 整合組織基因與蛋白質表現資料以提升化合物疾病關係推論分析
    Integration of tissue-specific gene and protein expression data to improve chemical-disease inference
    作者: 王千綸
    Wang, Chien-Lun
    貢獻者: 智慧數據應用產業碩士專班
    童俊維
    謝邦昌
    關鍵詞: 基因表現;蛋白質表現;預測毒理學;組織特異性;生物資訊學;資料庫
    Gene Expression;Protein Expression;Predictive Toxicology;Tissue Specificity;Bioinformatics;Database
    日期: 2021-06-08
    上傳時間: 2022-03-03 11:33:00 (UTC+8)
    摘要: 世界衛生組織 (World Health Organization) 指出,心血管疾病 (Cardiovascular diseases , CVDs) 是全球最大死因,2019 年造成全球約 1,790 萬人死亡,占死亡總人數 的 32%,在 1,700 萬非因傳染性疾病導致的過早死亡案例(七十歲以下)中,有 38% 歸屬心血管疾病。另根據衛生福利部 108 年度死因統計,心臟病是國人第二號殺手, 造成 19,859 人死亡,較 107 年度更有 1.1%的增幅趨勢。人類在日常生活中,會接觸到 成千上萬可能致病的化合物,而針對日益嚴重的疾病威脅,多數化合物不僅缺乏相關 毒性數據也未執行毒物風險評估。
    然而,大量進行實驗操作驗證,不僅曠日費時,亦需耗費大量資源與成本。故以 化合物疾病推論分析系統 (Chemical-disease inference System , ChemDIS) ,以識別化 學品相關潛在毒性風險,並產生可作檢驗的假設,以達到加速危害識別過程之效。
    惟預測毒理學瓶頸之一係為富集化分析後會產生許多可能結果,而過多的預測結 果亦使得後續的研究過程更加複雜與困難,此研究的目的是希望利用 KNIME 平台架 構 ChemDIS 系統,並以比較毒理基因體學資料庫 CTD (Comparative Toxicogenomics Database) 建立的化合物疾病關係編審資料來驗證在加入基因與蛋白質表現量資料後, 能否提升化合物疾病關係推論的預測表現,藉此降低後續分析與驗證的難度。本研究 以心血管相關疾病為首要的分析類別來進行概念驗證,未來可拓展至其他疾病做進一 步探討。日後可供後續的研究者設計實驗驗證並作為相關毒理資料庫之功能參考。
    The World Health Organization (WHO) points out that cardiovascular diseases (CVDs) are the world’s
    largest cause of death, causing approximately 17.9 million deaths worldwide in 2019, accounting for 32% of the total deaths. Out of the 17 million premature deaths (under the age of 70) due to noncommunicable diseases in 2019, 38% were caused by CVDs.
    In addition, according to the Ministry of Health and Welfare's statistics on the cause of death in 108 years, heart disease is the second killer of citizens, causing 19,859 deaths, which increases 1.1% compared to the previous year. At the same time, humans are exposed to thousands of chemical substances in everyday life. Facing increasingly serious threats of diseases, most of them lack the toxicological data and have not performed the risk assessment.
    However, a large number of experimental operations is not only time-consuming but also consumes a lot of resources and costs. Therefore, the Chemical-disease inference System (ChemDIS) is used to identify potential toxicity risks related to chemicals and generate testable hypotheses to accelerate the hazard identification process.
    Although one of the bottlenecks in predicting toxicology is that enrichment analysis will produce many possible results, too many predictive results also make the subsequent research process more complicated and difficult. This research aims to utilize the KNIME platform to build the ChemDIS system. The chemical-disease relationship compilation dataset established by the CTD (Comparative Toxicogenomics Database) is used to verify whether the addition of gene and protein expression data can improve the predictive performance of chemical-disease inferences, thereby reducing the follow-up difficulties of analysis and verification. Our research uses cardiovascular-related disease data as the primary analysis category for proof of concept, and it can be expanded to other diseases for further discussion in the future. It can also be used by subsequent researchers to design experimental verification and serve as a functional reference for the relevant toxicology database.
    描述: 碩士
    指導教授:童俊維
    指導教授:謝邦昌
    委員:王家琪
    委員:張詠淳
    委員:許明暉
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML679檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋