English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45065/58241 (77%)
造訪人次 : 2246075      線上人數 : 410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61230


    題名: 具備依存關係學習能力的深度神經網路檢測金融推文中的數值關係
    Numerical Relation Detection in Financial Tweets using Dependency-aware Deep Neural Network
    作者: 梁予琪
    LIANG, YU-CHI
    貢獻者: 大數據科技及管理研究所碩士班
    張詠淳
    許明暉
    關鍵詞: 金融社交媒體;基於變換器的雙向編碼器表示技術;卷積神經網路;深度學習;依存語法
    Financial Social Media;BERT;CNN;Deep Learning;Dependency Grammer
    日期: 2021-07-13
    上傳時間: 2021-12-28 16:53:05 (UTC+8)
    摘要: 隨著金融科技議題熱度逐年上升,近年來有許多研究針對金融資料文本 進行分析,然而在這些文本資料中數字亦包含著豐富之資訊,因此,本研 究希望藉由與金融議題相關之推特文章探討文本中目標數字與目標標籤是 否具有關聯性。
    本文採用基於變換器的雙向編碼器表示技術(Bidirectional Encoder Representations from Transformers, BERT)作為模型主要架構,並將依存關係 矩陣作為特徵轉成依存關係矩陣後放入卷積神經網路(Convolutional Neural Network, CNN)中,使模型可以透過依存關係學習到文本中詞與詞間的關聯 性。根據研究結果顯示,本研究所採用之方法對於辨識文本中目標數字與 目標標籤是否具有關聯性有良好之預測能力,其 Macro-averaging F1 Score 為 71.05%,於 NTCIR-15 FinNum-2 任務中獲取第三名之成績且與前二名預 測效能接近。
    Machine learning methods for financial document analysis have been focusing mainly on the textual part. However, the numerical parts of these documents are also rich in information content. In order to further analyze the financial text, we should assay the numeric information in depth. In light of this, the purpose of this research is to identify the linking between the target cashtag and the target numeral in financial tweets, which is more challenging than analyzing news and official documents. In this research, we developed a multi model fusion approach which integrates Bidirectional Encoder Representations from Transformers (BERT) and Convolutional Neural Network (CNN). We also encode dependency information behind text into the model to derive semantic latent features. The experimental results show that our model can achieve remarkable performance and outperform comparisons.
    描述: 碩士
    指導教授:張詠淳
    指導教授:許明暉
    委員:戴敏育
    委員:蘇家玉
    委員:童俊維
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML178檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋