English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2528945      線上人數 : 183
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/6115


    題名: 建立類神經網路模型以預測propofol用於麻醉誘導時所產生的睡眠效應
    Neural Network Modeling to Predict the Hypnotic Effect of Propofol Bolus Induction
    作者: 林朝順
    Lin Chao-Shun
    貢獻者: 醫學資訊研究所
    關鍵詞: 麻醉
    類神經網路
    畢斯指數
    propofol
    anesthesia
    neural networks
    Bispectral index
    propofol
    日期: 2002
    上傳時間: 2009-09-11 16:20:20 (UTC+8)
    摘要: Propofol的臨床劑量需求,決定於個別病人的特異性,以及併用藥物的交互作用。當以單次劑量給予propofol以達到麻醉誘導目的時,如何計算個別病人的最佳劑量,以及此劑量是否完全適合於此位病人,至目前為止一直沒有明確地被研究。本篇論文的目的,希望以普遍可得的臨床參數為基礎,訓練一類神經網路模型,此模型可根據個別病人的特異性,對於利用propofol實行麻醉誘導時,所達到的睡眠效應是否足夠做出預測。
    預定在靜脈麻醉下接受常規手術的病人,共兩百七十位成為我們的研究對像。根據相關的醫學文獻以及過去的臨床經驗,總共十項參數,包括propofol劑量,病人的年齡性別,身高體重等等,被選定為訓練類神經網路的輸入參數。我們使用畢斯腦波指數(bispectral index)監測病人的意識清醒程度,用以判斷propofol的造成的睡眠效應,並以此做為網路訓練的輸出參數。以一百八十位病人的資料用來訓練類神經網路,完成兩種不同架構的模型之後,再以另外未參與訓練的九十組病人資料,來測試此模型的效能。三位資深麻醉醫師對於propofol的睡眠效應的預測結果,將和類神經網路模型的結果做比較。
    類神經網路模型之一的standard networks,對於測試組資料的sensitivity為76.19 %,specificity為65.22 %,而另外一種網路架構Ward networks則分別為80.95 %和57.97 %。臨床麻醉醫師的預測結果,sensitivity為23.81 %,specificity為91.30 %。兩種類神經網路模型得到的結果,繪製出ROC曲線,曲線下面積分別為0.7552和0.7272。
    在計算propofol的劑量需求時,個別病人的特異性應列入考慮,但是在目前的臨床醫學卻無法確實做到。在此篇論文中,我們訓練了類神經網路模型,針對病人的不同特性,來預測propofol的麻醉效應,最後得到的結果雖然優於臨床醫師,但仍然不盡理想。包含心輸出量,中心血液容積等幾項重要的因素無法被加入訓練,應是主要的原因。未來應可以此實驗架構為基礎,增加收錄的樣本數,以及加入重要的決定性因素,如此應能進一步強化類神經網路模型的預測能力,未來可做為臨床醫師在決定propofol劑量時的決策輔助。
    Dose requirements of propofol to achieve loss of consciousness depend on the interindividual variability and on the interaction with other concomitant medication. Until now when propofol was administrated by a single bolus, how to define the optimal individual dose and to investigate its hypnotic effect have not been clearly studied. The goal of this study is to develop an artificial neural network model on the basis of common clinical parameters. We would demonstrate its ability in predicting the hypnotic effect of propofol bolus induction and compare the network output to clinician’s prediction.
    Two hundred and seventy patients undergoing elective surgery under total intravenous anesthesia were enrolled into this study. Ten parameters were chosen as the input factors based on the related literatures and clinical experiences. The bispectral index of EEG was used to record the consciousness level of patients and served as the output factor. The predictive model derived from the artificial neural network was validated on an entirely different data set that was not included in the training set. The architectures selected in this study were the standard nets and the Ward nets using the NeuroShell 2 software system. Three senior anesthesiologists in our department would make predictions of validation set according to the chosen input factors. The results would be compared to those of trained artificial neural networks.
    The standard nets had a sensitivity of 76.19 % and a specificity of 65.22 %. The ward nets had a sensitivity of 80.95 % and a specificity of 57.97 %. The clinician made prediction for the 3rd min BIS >60 with a sensitivity of 23.81 % and a specificity of 91.30 %. The area under ROC curve for the standard nets and ward nets were 0.7552 and 0.7274 respectively. The predictive results of neural net models were superior to that of clinician.
    When calculating the dose requirement of propofol, we should consider the individual condition of each patient. In this study we constructed the artificial neural network model to predict the 3rd min of anesthesia depth under propofol bolus induction. In the future we could enhance the sensitivity and specificity by adding more important parameters. The dosing support system of propofol might be accomplished on the basis of this model to provide the optimal bolus dose to achieve the ideal induction endpoint. This model can potentially help determine the optimal dose of propofol and thus reduce the anesthetic cost.
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    摘要.doc29KbMicrosoft Word118檢視/開啟
    摘要.pdf74KbAdobe PDF196檢視/開啟
    摘要.ppt111KbMicrosoft Powerpoint109檢視/開啟
    摘要.ps473KbPostscript82檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋